Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and...Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and maintaining the devices,it is difficult to apply them to intensive weather phenomenon recognition.Moreover,advanced machine learning models such as Convolutional Neural Networks(CNNs)have shown a lot of promise in meteorology,but these models also require intensive computation and large memory,which make it difficult to use them in reality.In practice,lightweight models are often used to solve such problems.However,lightweight models often result in significant performance losses.To this end,after taking a deep dive into a large number of lightweight models and summarizing their shortcomings,we propose a novel lightweight CNNs model which is constructed based on new building blocks.The experimental results show that the model proposed in this paper has comparable performance with the mainstream non-lightweight model while also saving 25 times of memory consumption.Such memory reduction is even better than that of existing lightweight models.展开更多
Storm identification and tracking based on weather radar data are essential to nowcasting and severe weather warning. A new two-dimensional storm identification method simultaneously seeking in two directions is propo...Storm identification and tracking based on weather radar data are essential to nowcasting and severe weather warning. A new two-dimensional storm identification method simultaneously seeking in two directions is proposed, and identification results are used to discuss storm tracking algorithms. Three modern optimization algorithms (simulated annealing algorithm, genetic algorithm and ant colony algorithm) are tested to match storms in successive time intervals. Preliminary results indicate that the simulated annealing algorithm and ant colony algorithm are effective and have intuitionally adjustable parameters, whereas the genetic algorithm is unsatisfaetorily constrained by the mode of genetic operations Experiments provide not only the feasibility and characteristics of storm tracking with modern optimization algorithms, but also references for studies and applications in relevant fields.展开更多
基金This paper is supported by the following funds:National Key R&D Program of China(2018YFF01010100)National natural science foundation of China(61672064)+1 种基金Basic Research Program of Qinghai Province under Grants No.2020-ZJ-709Advanced information network Beijing laboratory(PXM2019_014204_500029).
文摘Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and maintaining the devices,it is difficult to apply them to intensive weather phenomenon recognition.Moreover,advanced machine learning models such as Convolutional Neural Networks(CNNs)have shown a lot of promise in meteorology,but these models also require intensive computation and large memory,which make it difficult to use them in reality.In practice,lightweight models are often used to solve such problems.However,lightweight models often result in significant performance losses.To this end,after taking a deep dive into a large number of lightweight models and summarizing their shortcomings,we propose a novel lightweight CNNs model which is constructed based on new building blocks.The experimental results show that the model proposed in this paper has comparable performance with the mainstream non-lightweight model while also saving 25 times of memory consumption.Such memory reduction is even better than that of existing lightweight models.
基金National Natural Science Foundation of China (60674074)Natural Science Foundation of Jiangsu province (BK2009415)+5 种基金Research Fund for the Doctoral Program of Higher Education of China (20093228110002)College Graduate Student Research and Innovation Program of Jiangsu province (CX09B_227Z)Meteorology Industry Special Project of CMA (GYHY(QX)2007-6-2)National 863 Project (2007AA061901)Project of State Key Laboratory of Severe Weather of Chinese Academy of Meteorological Sciences (2008LASW-B11)Project 2009Y0006
文摘Storm identification and tracking based on weather radar data are essential to nowcasting and severe weather warning. A new two-dimensional storm identification method simultaneously seeking in two directions is proposed, and identification results are used to discuss storm tracking algorithms. Three modern optimization algorithms (simulated annealing algorithm, genetic algorithm and ant colony algorithm) are tested to match storms in successive time intervals. Preliminary results indicate that the simulated annealing algorithm and ant colony algorithm are effective and have intuitionally adjustable parameters, whereas the genetic algorithm is unsatisfaetorily constrained by the mode of genetic operations Experiments provide not only the feasibility and characteristics of storm tracking with modern optimization algorithms, but also references for studies and applications in relevant fields.