In rice, amylose content (AC) is controlled by a single dominant Waxy gene. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Casg) to introduce a loss-of-function m...In rice, amylose content (AC) is controlled by a single dominant Waxy gene. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Casg) to introduce a loss-of-function mutation into the Waxy gene in two widely cultivated elite japonica varieties. Our results show that mutations in the Waxy gene reduce AC and convert the rice into glutinous ones without affecting other desirable agronomic traits, offering an effective and easy strategy to improve glutinosity in elite varieties. Importantly, we successfully removed the transgenes from the progeny. Our study provides an example of generating improved crops with potential for commercialization, by editing a gene of interest directly in elite crop varieties.展开更多
The translucent endosperm trait in a japonica rice variety 'Kantou 194' is controlled by a Wx-mq gene which is allelic to Wx locus by genetic analysis and allelic test. The amylose content analysis showed that an in...The translucent endosperm trait in a japonica rice variety 'Kantou 194' is controlled by a Wx-mq gene which is allelic to Wx locus by genetic analysis and allelic test. The amylose content analysis showed that an intermediate amylose content between those of glutinous and non-glutinous rice existed in endosperm of homozygous Wx-mq genotype. The slight changes of amylose content in different varieties and F1 grains with an identical Wx-mq genotype might be influenced by dissimilar genetic background. To identify the Wx-mq genotype simply and rapidly, a cleaved amplified polymorphic sequence (CAPS) marker was designed. The result from the molecular detection indicated that it could be used for marker-assisted selection for low amylose content varieties in rice breeding.展开更多
基金supported by the Chinese Academy of SciencesUS NIH Grants R01GM070795 and R01GM059138(to J.K.Z.)the support of the International Postdoctoral Exchange Fellowship Program of China under grant 20140029
文摘In rice, amylose content (AC) is controlled by a single dominant Waxy gene. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Casg) to introduce a loss-of-function mutation into the Waxy gene in two widely cultivated elite japonica varieties. Our results show that mutations in the Waxy gene reduce AC and convert the rice into glutinous ones without affecting other desirable agronomic traits, offering an effective and easy strategy to improve glutinosity in elite varieties. Importantly, we successfully removed the transgenes from the progeny. Our study provides an example of generating improved crops with potential for commercialization, by editing a gene of interest directly in elite crop varieties.
基金supported by the National High Technology Research and Development Program of China(Grant No.2006AA100101)National Science and Technology Support Program of China(Grant No. 2006BAD01A01-5)+1 种基金Special Program for Rice Scientific Research,Ministry of Agriculture,China(Grant No. nyhyzx 07-001-006)Super Rice Breeding and Demonstration Program,Ministry of Agriculture,China and Jiangsu Agricultural Scientific Self-innovation Fund,China(Grant No.CX[07]603)
文摘The translucent endosperm trait in a japonica rice variety 'Kantou 194' is controlled by a Wx-mq gene which is allelic to Wx locus by genetic analysis and allelic test. The amylose content analysis showed that an intermediate amylose content between those of glutinous and non-glutinous rice existed in endosperm of homozygous Wx-mq genotype. The slight changes of amylose content in different varieties and F1 grains with an identical Wx-mq genotype might be influenced by dissimilar genetic background. To identify the Wx-mq genotype simply and rapidly, a cleaved amplified polymorphic sequence (CAPS) marker was designed. The result from the molecular detection indicated that it could be used for marker-assisted selection for low amylose content varieties in rice breeding.