Metal-nanocluster materials have gradually become a promising electrode candidate for supercapaci-tor application.The high-efficient and rational architecture of these metal-nanocluster electrode mate-rials with satis...Metal-nanocluster materials have gradually become a promising electrode candidate for supercapaci-tor application.The high-efficient and rational architecture of these metal-nanocluster electrode mate-rials with satisfied supercapacitive performance are full of challenges.Herein,Fe-nanocluster anchored porous carbon(FAPC)nanosheets were constructed through a facile and low-cost impregnation-activation strategy.Various characterization methods documented that FAPC nanosheets possessed a mesopore-dominated structure with large surface area and abundant Fe-N4 active sites,which are crucial for su-percapacitive energy storage.The optimal FAPC electrode exhibited a high specific capacitance of 378 F/g at a specific current of 1 A/g and an excellent rate capability(271 F/g at 10 A/g),which are comparable or even superior to that of most reported carbon candidates.Furthermore,the FAPC-based device achieved a desired specific energy of 14.8 Wh/kg at a specific power of 700 W/kg.This work opens a new avenue to design metal-nanocluster materials for high-performance biomass waste-based supercapacitors.展开更多
基金supported by the National Key R&D Program of China(No.2023YFC3905804)the National Natural Science Foundation of China(Nos.22078374,22378434,22309210)+4 种基金the National Ten Thousand Talent Plan,the Key Realm Research and Development Program of Guangdong Province(No.2020B0202080001)Science and Technology Planning Project of Guangdong Province,China(No.2021B1212040008)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011150)the Scientific and Technological Planning Project of Guangzhou(No.202206010145)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.23qnpy85).
文摘Metal-nanocluster materials have gradually become a promising electrode candidate for supercapaci-tor application.The high-efficient and rational architecture of these metal-nanocluster electrode mate-rials with satisfied supercapacitive performance are full of challenges.Herein,Fe-nanocluster anchored porous carbon(FAPC)nanosheets were constructed through a facile and low-cost impregnation-activation strategy.Various characterization methods documented that FAPC nanosheets possessed a mesopore-dominated structure with large surface area and abundant Fe-N4 active sites,which are crucial for su-percapacitive energy storage.The optimal FAPC electrode exhibited a high specific capacitance of 378 F/g at a specific current of 1 A/g and an excellent rate capability(271 F/g at 10 A/g),which are comparable or even superior to that of most reported carbon candidates.Furthermore,the FAPC-based device achieved a desired specific energy of 14.8 Wh/kg at a specific power of 700 W/kg.This work opens a new avenue to design metal-nanocluster materials for high-performance biomass waste-based supercapacitors.