One of the challenges in predicting the dynamic response of deepwater risers under vortex-induced vibration (VIV) is that it runs short of believable fluid loading model. Moreover, the hydrodynamic loading is also d...One of the challenges in predicting the dynamic response of deepwater risers under vortex-induced vibration (VIV) is that it runs short of believable fluid loading model. Moreover, the hydrodynamic loading is also difficult to be measured directly in the VIV experiments without disturbing the fluid field. In the present work, by means of a finite element analysis method based on the experimental data of the response displacements, the total instantaneous distributions of hydrodynamic forces together with the hydrodynamic coefficients on the riser model with large aspect ratio (length/ddiameter) of 1750 are achieved. The steady current speeds considered in the experiments of this work are ranging from 0.15 rn/s to 0.60 m/s, giving the Reynolds Number between 2400 and 9600. The hydrodynamic coefficients are evaluated at the fundamental frequency and in the higher order frequency components for both in-line and cross-flow directions. It is found that the Root-Mean Squared hydrodynamic forces of the higher order response frequency are larger than those of the fundamental response frequency. Negative lift or drag coefficients are found in the numerical results which is equivalent to the effect of fluid damping.展开更多
A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underex...A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.展开更多
The cross-flow(CF)vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to uniform or shear flow loads is investigated numerically.The model is based on a three-dimensional(3D)nonlinear elastic ro...The cross-flow(CF)vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to uniform or shear flow loads is investigated numerically.The model is based on a three-dimensional(3D)nonlinear elastic rod theory coupled with a wake oscillator model.In this numerical simulation,the nonlinear motion equations of the riser with large deformation features are established in a global coordinate system to avoid the transformation between global and local coordinate systems,and are discretized with the time-domain finite element method(FEM).A wakeoscillator model is employed to study the vortex shedding,and the lift force generated by the wake flow is described in a van der Pol equation.A Newmark-βiterative scheme is used to solve their coupling equation for the VIV response of the SWR.The developed model is validated against the existing experimental results for the VIV response of the top-tension riser(TTR).Then,the numerical simulations are executed to determine VIV characteristics of the SWR.The effects of both flow velocity and the spanwise length of the flow field on the drag coefficient in the inline(IL)direction and the lift coefficient in the CF direction are investigated systematically.The results indicate that compared with TTR,the low frequency and multi-modal vibration are the main components of the SWR due to the large deformation and flexible characteristics.For shear flow,the multi-frequency resonance dominates the VIV response of the SWR,especially at the hang-off segment.展开更多
The terahertz(THz)vortex beam generators are designed and theoretically investigated based on single-layer ultra-thin transmission metasurfaces.Noncontinuous phase changes of metasurfaces are obtained by utilizing Pan...The terahertz(THz)vortex beam generators are designed and theoretically investigated based on single-layer ultra-thin transmission metasurfaces.Noncontinuous phase changes of metasurfaces are obtained by utilizing Pancharatnam-Berry phase elements,which possess different rotation angles and are arranged on two concentric rings centered on the origin.The circularly polarized incident THz beam could be turned into a cross-polarization transmission wave,and the orbital angular momentum(OAM)varies in value by lh.The l values change from±1 to±5,and the maximal cross-polarization conversion efficiency that could be achieved is 23%,which nearly reaches the theoretical limit of a single-layer structure.The frequency range of the designed vortex generator is from 1.2 THz to 1.9 THz,and the generated THz vortex beam could keep a high fidelity in the operating bandwidth.The propagation behavior of the emerged THz vortex beam is analyzed in detail.Our work offers a novel way of designing ultra-thin and single-layer vortex beam generators,which have low process complexity,high conversion efficiency and broad bandwidth.展开更多
Numerical simulations of flows past the piggyback circular cylinders in tandem arrangement are performed by solving the variational multiscale formulation of the incompressible Navier-Stokes equations using in-house f...Numerical simulations of flows past the piggyback circular cylinders in tandem arrangement are performed by solving the variational multiscale formulation of the incompressible Navier-Stokes equations using in-house finite element method(FEM)codes.The effects of the gap-spacing-to-diameter(G/D)and the two diameter ratio(d/D)on the flow characteristics and the reductions of the root-mean-square(RMS)drag and lift coefficients are considered for Reynolds numbers(Res)are 100 and 200.The validation shows the fluid force coefficients obtained by the in-house FEM codes are in good agreement with the results in the existing literatures.The obtained results show that,with a proper placement of the smaller cylinder(d/D=0.2)behind the larger cylinder,the RMS drag and lift coefficients largely decrease compared to those of the single circular cylinder.When d/D=0.2,the largest reductions of the RMS lift coefficient of the larger cylinder and the RMS total lift coefficient appear at G/D=1.2 as Re=100 and at G/D=1.0 as Re=200.It is observed that the proper placement of the smaller cylinder causes the surrounding vorticity to take opposite sign with the vorticity in the outer region so as to suppress and postpone the vortex shedding in the wake,and that the different positions of the vortex shedding at two Res cause that the largest reductions of the RMS lift coefficient of the larger cylinder and the RMS total lift coefficient appear at different G/D as Re is different.When d/D varies,the variation of the RMS total lift coefficient behaves differently at two Res.It decreases with J/D increasing at Re=100,while it no longer monotonously varies with J/D,but reaches a minimum in the considered range of d/D at Re=200.Moreover,the larger d/D results in stronger suppression and postponement of the vortex shedding in the wake.展开更多
An improved three-dimensional(3D)time-domain couple model is established in this paper to simulate the bidirectional vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to oblique currents.In th...An improved three-dimensional(3D)time-domain couple model is established in this paper to simulate the bidirectional vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to oblique currents.In this model,the nonlinear motion equations of the riser are established in the global coordinate system based on the slender rod theory with the finite element method.Van der Pol equations are used to describe the lift forces induced by the x-and y-direction current components,respectively.The coupled equations at each time step are solved by a Newmark-βiterative scheme for the SWR VIV.The present model is verified by comparison with the published experimental results for a top-tension riser.Then,a series of simulations are executed to determine the influences of the oblique angle/velocity of the current,different top-end positions and the length of the buoyancy segment on the VIV displacement,oscillating frequency as well as hydrodynamic coefficients of the SWR.The results demonstrate that there exists a coupled resonant VIV corresponding to x-direction and y-direction,respectively.However,the effective frequency is almost identical between the vibrations at the hang-off segment along x and y directions.The addition of the buoyancy modules in the middle of the SWR has a beneficial impact on the lift force of three segments and simultaneously limits the VIV response,especially at the decline segment and the hang-off segments.Additionally,the incident current direction significantly affects the motion trajectory of the SWR which mainly includes the fusiform and rectangle shapes.展开更多
In this paper,we study numerically quantized vortex dynamics and their interaction in the two-dimensional(2D)Ginzburg-Landau equation(GLE)with a dimensionless parameter#>0 on bounded domains under either Dirichlet ...In this paper,we study numerically quantized vortex dynamics and their interaction in the two-dimensional(2D)Ginzburg-Landau equation(GLE)with a dimensionless parameter#>0 on bounded domains under either Dirichlet or homogeneous Neumann boundary condition.We begin with a reviewof the reduced dynamical laws for time evolution of quantized vortex centers in GLE and show how to solve these nonlinear ordinary differential equations numerically.Then we present efficient and accurate numerical methods for discretizing the GLE on either a rectangular or a disk domain under either Dirichlet or homogeneous Neumann boundary condition.Based on these efficient and accurate numerical methods for GLE and the reduced dynamical laws,we simulate quantized vortex interaction of GLE with different#and under different initial setups including single vortex,vortex pair,vortex dipole and vortex lattice,compare them with those obtained from the corresponding reduced dynamical laws,and identify the cases where the reduced dynamical laws agree qualitatively and/or quantitatively as well as fail to agree with those from GLE on vortex interaction.Finally,we also obtain numerically different patterns of the steady states for quantized vortex lattices under the GLE dynamics on bounded domains.展开更多
In this work, the vortex methods for Euler equations with initial boundary value problem is considered, Poisson equations are solved using boundary element methods which can be seen to require less operations to compu...In this work, the vortex methods for Euler equations with initial boundary value problem is considered, Poisson equations are solved using boundary element methods which can be seen to require less operations to compute the velocity field from the vorticity by Chorin([6]). We prove that the rate of convergence of the boundary element schemes can be independent of the vortex blob parameters.展开更多
基金supported by the 863 Program of China (Grant No. 2006AA09A103)partially supported by the National Natural Science Foundation of China (Grant No. 50921001)the open fund from the State Key Laboratory of Coastal and Offshore Engineering (Grant No. LP0904)
文摘One of the challenges in predicting the dynamic response of deepwater risers under vortex-induced vibration (VIV) is that it runs short of believable fluid loading model. Moreover, the hydrodynamic loading is also difficult to be measured directly in the VIV experiments without disturbing the fluid field. In the present work, by means of a finite element analysis method based on the experimental data of the response displacements, the total instantaneous distributions of hydrodynamic forces together with the hydrodynamic coefficients on the riser model with large aspect ratio (length/ddiameter) of 1750 are achieved. The steady current speeds considered in the experiments of this work are ranging from 0.15 rn/s to 0.60 m/s, giving the Reynolds Number between 2400 and 9600. The hydrodynamic coefficients are evaluated at the fundamental frequency and in the higher order frequency components for both in-line and cross-flow directions. It is found that the Root-Mean Squared hydrodynamic forces of the higher order response frequency are larger than those of the fundamental response frequency. Negative lift or drag coefficients are found in the numerical results which is equivalent to the effect of fluid damping.
文摘A discontinuous Galerkin finite element method (DG-FEM) is developed for solving the axisymmetric Euler equations based on two-dimensional conservation laws. The method is used to simulate the unsteady-state underexpanded axisymmetric jet. Several flow property distributions along the jet axis, including density, pres- sure and Mach number are obtained and the qualitative flowfield structures of interest are well captured using the proposed method, including shock waves, slipstreams, traveling vortex ring and multiple Mach disks. Two Mach disk locations agree well with computational and experimental measurement results. It indicates that the method is robust and efficient for solving the unsteady-state underexpanded axisymmetric jet.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52111530137 and 52025112)the Natural Science Found of Jiangsu Province(Grant No.BK20160556)the Jiangsu Provincial Higher Education Natural Science Research Major Project(Grant No.18KJA580003)。
文摘The cross-flow(CF)vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to uniform or shear flow loads is investigated numerically.The model is based on a three-dimensional(3D)nonlinear elastic rod theory coupled with a wake oscillator model.In this numerical simulation,the nonlinear motion equations of the riser with large deformation features are established in a global coordinate system to avoid the transformation between global and local coordinate systems,and are discretized with the time-domain finite element method(FEM).A wakeoscillator model is employed to study the vortex shedding,and the lift force generated by the wake flow is described in a van der Pol equation.A Newmark-βiterative scheme is used to solve their coupling equation for the VIV response of the SWR.The developed model is validated against the existing experimental results for the VIV response of the top-tension riser(TTR).Then,the numerical simulations are executed to determine VIV characteristics of the SWR.The effects of both flow velocity and the spanwise length of the flow field on the drag coefficient in the inline(IL)direction and the lift coefficient in the CF direction are investigated systematically.The results indicate that compared with TTR,the low frequency and multi-modal vibration are the main components of the SWR due to the large deformation and flexible characteristics.For shear flow,the multi-frequency resonance dominates the VIV response of the SWR,especially at the hang-off segment.
基金the National Natural Science Foundation of China(Grant No.62071312)the Important R&D Projects of Shanxi Province,China(Grant No.201803D121083)the Shanxi Scholarship Council(Grant No.2020-135).
文摘The terahertz(THz)vortex beam generators are designed and theoretically investigated based on single-layer ultra-thin transmission metasurfaces.Noncontinuous phase changes of metasurfaces are obtained by utilizing Pancharatnam-Berry phase elements,which possess different rotation angles and are arranged on two concentric rings centered on the origin.The circularly polarized incident THz beam could be turned into a cross-polarization transmission wave,and the orbital angular momentum(OAM)varies in value by lh.The l values change from±1 to±5,and the maximal cross-polarization conversion efficiency that could be achieved is 23%,which nearly reaches the theoretical limit of a single-layer structure.The frequency range of the designed vortex generator is from 1.2 THz to 1.9 THz,and the generated THz vortex beam could keep a high fidelity in the operating bandwidth.The propagation behavior of the emerged THz vortex beam is analyzed in detail.Our work offers a novel way of designing ultra-thin and single-layer vortex beam generators,which have low process complexity,high conversion efficiency and broad bandwidth.
基金The project was supported by the Natural Science Foundation of Jiangsu Province(Grant SBK2018040999)the Natural Science Research of Jiangsu Higher Education Institutions of China(Grant 18KJB570001)the National Natural Science Foundation of China(Grants 51879123 and 91852111).
文摘Numerical simulations of flows past the piggyback circular cylinders in tandem arrangement are performed by solving the variational multiscale formulation of the incompressible Navier-Stokes equations using in-house finite element method(FEM)codes.The effects of the gap-spacing-to-diameter(G/D)and the two diameter ratio(d/D)on the flow characteristics and the reductions of the root-mean-square(RMS)drag and lift coefficients are considered for Reynolds numbers(Res)are 100 and 200.The validation shows the fluid force coefficients obtained by the in-house FEM codes are in good agreement with the results in the existing literatures.The obtained results show that,with a proper placement of the smaller cylinder(d/D=0.2)behind the larger cylinder,the RMS drag and lift coefficients largely decrease compared to those of the single circular cylinder.When d/D=0.2,the largest reductions of the RMS lift coefficient of the larger cylinder and the RMS total lift coefficient appear at G/D=1.2 as Re=100 and at G/D=1.0 as Re=200.It is observed that the proper placement of the smaller cylinder causes the surrounding vorticity to take opposite sign with the vorticity in the outer region so as to suppress and postpone the vortex shedding in the wake,and that the different positions of the vortex shedding at two Res cause that the largest reductions of the RMS lift coefficient of the larger cylinder and the RMS total lift coefficient appear at different G/D as Re is different.When d/D varies,the variation of the RMS total lift coefficient behaves differently at two Res.It decreases with J/D increasing at Re=100,while it no longer monotonously varies with J/D,but reaches a minimum in the considered range of d/D at Re=200.Moreover,the larger d/D results in stronger suppression and postponement of the vortex shedding in the wake.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51861130358 and 51609109)the State Key Laboratory of Ocean Engineering,China(Shanghai Jiao Tong University)(Grant No.1905)the Newton Advanced Fellowships of the Royal Society,and the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_3153).
文摘An improved three-dimensional(3D)time-domain couple model is established in this paper to simulate the bidirectional vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to oblique currents.In this model,the nonlinear motion equations of the riser are established in the global coordinate system based on the slender rod theory with the finite element method.Van der Pol equations are used to describe the lift forces induced by the x-and y-direction current components,respectively.The coupled equations at each time step are solved by a Newmark-βiterative scheme for the SWR VIV.The present model is verified by comparison with the published experimental results for a top-tension riser.Then,a series of simulations are executed to determine the influences of the oblique angle/velocity of the current,different top-end positions and the length of the buoyancy segment on the VIV displacement,oscillating frequency as well as hydrodynamic coefficients of the SWR.The results demonstrate that there exists a coupled resonant VIV corresponding to x-direction and y-direction,respectively.However,the effective frequency is almost identical between the vibrations at the hang-off segment along x and y directions.The addition of the buoyancy modules in the middle of the SWR has a beneficial impact on the lift force of three segments and simultaneously limits the VIV response,especially at the decline segment and the hang-off segments.Additionally,the incident current direction significantly affects the motion trajectory of the SWR which mainly includes the fusiform and rectangle shapes.
基金supported by the Singapore A*STAR SERC“Complex Systems”Research Programme grant 1224504056the Academic Research Fund of Ministry of Education of Singapore grant R-146-000-120-112。
文摘In this paper,we study numerically quantized vortex dynamics and their interaction in the two-dimensional(2D)Ginzburg-Landau equation(GLE)with a dimensionless parameter#>0 on bounded domains under either Dirichlet or homogeneous Neumann boundary condition.We begin with a reviewof the reduced dynamical laws for time evolution of quantized vortex centers in GLE and show how to solve these nonlinear ordinary differential equations numerically.Then we present efficient and accurate numerical methods for discretizing the GLE on either a rectangular or a disk domain under either Dirichlet or homogeneous Neumann boundary condition.Based on these efficient and accurate numerical methods for GLE and the reduced dynamical laws,we simulate quantized vortex interaction of GLE with different#and under different initial setups including single vortex,vortex pair,vortex dipole and vortex lattice,compare them with those obtained from the corresponding reduced dynamical laws,and identify the cases where the reduced dynamical laws agree qualitatively and/or quantitatively as well as fail to agree with those from GLE on vortex interaction.Finally,we also obtain numerically different patterns of the steady states for quantized vortex lattices under the GLE dynamics on bounded domains.
文摘In this work, the vortex methods for Euler equations with initial boundary value problem is considered, Poisson equations are solved using boundary element methods which can be seen to require less operations to compute the velocity field from the vorticity by Chorin([6]). We prove that the rate of convergence of the boundary element schemes can be independent of the vortex blob parameters.