Propagated sensation along meridians (PSM) is a phenomenon that a sensation moves along meridians during stimulation of an acupoint. PSM has an appearance rate of 1.3% among people and have characteristics of low sp...Propagated sensation along meridians (PSM) is a phenomenon that a sensation moves along meridians during stimulation of an acupoint. PSM has an appearance rate of 1.3% among people and have characteristics of low speed, going toward afflicted sites and being blocked by physical pressure which is difficult to be explained by known neural and blood transmission. Volume transmission (VT) is a widespread mode of intercellular communication in the central nervous system that occurs in the extracellular fluid and in the cerebrospinal fluid. VT signals moves from source to target cells via energy gradients leading to diffusion and convection (flow) which is slow, long distance and much less space filling. VT channel diffuse forming a plexus in the extracellular space with two parameters of volume fraction and tortuosity. Some experiments showed an information transmission between adjacent and distant acupoints along meridians cross spinal segments. This process is a cross-excitation between peripheral nerve terminals which is related to nonsynaptic transmission. Some neurotransmitters or neuropeptides such as glutamate, adenosine triphosphate (ATP) and neuropeptide such as substance P, neurokinin A and calcitonin gene-related peptide relate with the cross-excitation which can be regards as VT signals. Comparing the characteristics of PSM and VT, many similar aspects can be found leading to an assumption that PSM is a process of VT in peripheral tissue along meridians. The reason why VT signals transmit along meridians is that the meridian is rich in interstitial fluid under the condition of low hydraulic resistance which has been proven experimentally. According to Darcy's law which descript the flow of interstitial fluid and conservation equation, interstitial fluid will move toward meridians and flow along meridians that restrict the VT signals within the channel and accelerate the flow according to Fick's diffusion law. During the process, a degranulation of histamine from mast cells happens on th展开更多
The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord,but also to a novel type of communication ...The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord,but also to a novel type of communication called volume transmission.It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules,like neurotransmitters and extracellular vesicles.The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes.These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function.In fact,we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.展开更多
Volume transmission (VT) is a widespread mode of intercellular communication that occurs in the extracellular fluid (ECF) and in the cerebrospinal fluid (CSF) of the brain with VI signals moving from source to t...Volume transmission (VT) is a widespread mode of intercellular communication that occurs in the extracellular fluid (ECF) and in the cerebrospinal fluid (CSF) of the brain with VI signals moving from source to target cells via energy gradients leading to diffusion and convection (flow). The VT channels are diffuse forming a plexus in the extracellular space, while in wiring transmission (WT) the channels (axons, terminals) are private. The speed is slow (seconds-minutes) in VT while rapid in the millisecond range in w-r. The extracellular space is the substrate for VT, which is modulated by the extracellular matrix. Extrasynaptic VT is linked to synaptic transmission and likely often takes place due to incomplete diffusion barriers with the synaptic transmitter reaching extrasynaptic domains of the pre-and post-synaptic membrane of the synapse, the astroglia, and even adjacent synapses. Indications exist for the existence of striatal D2-1ike receptor-mediated extrasynaptic form of dopamine (DA) VT at the local circuit level in vivo in the human striatum. Synaptic glutamate via extrasynaptic VT can act on extrasynaptic metabotropic glutamate receptors located on the astroglia leading to Ca2~ mediated astrocytic glutamate release into the extracellular space (ECS). Long distance peptide VT and CSF VT is the major long distance VT with distances more than 1 mm and flow in the CSF. Indications for long distance vr of beta-endorphin and oxytocin are obtained. We propose that monogamy in the female prairie vole may take place through an increase in oxytocin v-r, especially in nucleus accumbens. Release of extracellular vesicles containing receptors, proteins, RNAs and mtDNA from cellular networks in the central nervous system (CNS) into the ECF and CSF may be a fundamental communication in the CNS. It represents a special form of volume transmission, the Roamer subtype of VT. It may greatly contribute to dynamic events of synaptic plasticity but also to spread of pathological pro展开更多
基金Supported by National Key Basic Research Program(973 No. 2010CB530507)National Nature Science Foundation(No. 81173206)
文摘Propagated sensation along meridians (PSM) is a phenomenon that a sensation moves along meridians during stimulation of an acupoint. PSM has an appearance rate of 1.3% among people and have characteristics of low speed, going toward afflicted sites and being blocked by physical pressure which is difficult to be explained by known neural and blood transmission. Volume transmission (VT) is a widespread mode of intercellular communication in the central nervous system that occurs in the extracellular fluid and in the cerebrospinal fluid. VT signals moves from source to target cells via energy gradients leading to diffusion and convection (flow) which is slow, long distance and much less space filling. VT channel diffuse forming a plexus in the extracellular space with two parameters of volume fraction and tortuosity. Some experiments showed an information transmission between adjacent and distant acupoints along meridians cross spinal segments. This process is a cross-excitation between peripheral nerve terminals which is related to nonsynaptic transmission. Some neurotransmitters or neuropeptides such as glutamate, adenosine triphosphate (ATP) and neuropeptide such as substance P, neurokinin A and calcitonin gene-related peptide relate with the cross-excitation which can be regards as VT signals. Comparing the characteristics of PSM and VT, many similar aspects can be found leading to an assumption that PSM is a process of VT in peripheral tissue along meridians. The reason why VT signals transmit along meridians is that the meridian is rich in interstitial fluid under the condition of low hydraulic resistance which has been proven experimentally. According to Darcy's law which descript the flow of interstitial fluid and conservation equation, interstitial fluid will move toward meridians and flow along meridians that restrict the VT signals within the channel and accelerate the flow according to Fick's diffusion law. During the process, a degranulation of histamine from mast cells happens on th
基金supported by grants from the Swedish Medical Research Council(04X-715)to KFby AFA Försakring(130328)to KF and DOBEby Hjarnfonden to DOBE.DOBE belong to Academia de Biólogos Cubanos
文摘The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord,but also to a novel type of communication called volume transmission.It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through diffusion and flow of molecules,like neurotransmitters and extracellular vesicles.The integration of synaptic and volume transmission takes place through allosteric receptor-receptor interactions in heteroreceptor complexes.These heterocomplexes represent major integrator centres in the plasma membrane and their protomers act as moonlighting proteins undergoing dynamic changes and their structure and function.In fact,we propose that the molecular bases of learning and memory can be based on the reorganization of multiples homo and heteroreceptor complexes into novel assembles in the post-junctional membranes of synapses.
基金Supported by grants from the Swedish Research Council (04X-715)Torsten and Ragnar Sderberg Foundation, Hjrnfonden and Marianne and Marcus Wallenberg Foundation to KF,by a grants from the Swedish Royal Academy of Sciences and Karolinska Institutet Forskningsstiftelser 2012 to DOB-E
文摘Volume transmission (VT) is a widespread mode of intercellular communication that occurs in the extracellular fluid (ECF) and in the cerebrospinal fluid (CSF) of the brain with VI signals moving from source to target cells via energy gradients leading to diffusion and convection (flow). The VT channels are diffuse forming a plexus in the extracellular space, while in wiring transmission (WT) the channels (axons, terminals) are private. The speed is slow (seconds-minutes) in VT while rapid in the millisecond range in w-r. The extracellular space is the substrate for VT, which is modulated by the extracellular matrix. Extrasynaptic VT is linked to synaptic transmission and likely often takes place due to incomplete diffusion barriers with the synaptic transmitter reaching extrasynaptic domains of the pre-and post-synaptic membrane of the synapse, the astroglia, and even adjacent synapses. Indications exist for the existence of striatal D2-1ike receptor-mediated extrasynaptic form of dopamine (DA) VT at the local circuit level in vivo in the human striatum. Synaptic glutamate via extrasynaptic VT can act on extrasynaptic metabotropic glutamate receptors located on the astroglia leading to Ca2~ mediated astrocytic glutamate release into the extracellular space (ECS). Long distance peptide VT and CSF VT is the major long distance VT with distances more than 1 mm and flow in the CSF. Indications for long distance vr of beta-endorphin and oxytocin are obtained. We propose that monogamy in the female prairie vole may take place through an increase in oxytocin v-r, especially in nucleus accumbens. Release of extracellular vesicles containing receptors, proteins, RNAs and mtDNA from cellular networks in the central nervous system (CNS) into the ECF and CSF may be a fundamental communication in the CNS. It represents a special form of volume transmission, the Roamer subtype of VT. It may greatly contribute to dynamic events of synaptic plasticity but also to spread of pathological pro