We synthesize significant recent results on the deep structure and origin of the active volcanoes in China's Mainland. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subduc...We synthesize significant recent results on the deep structure and origin of the active volcanoes in China's Mainland. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions.展开更多
The three-dimensional(3-D)electrical structure of the upper-mantle was used to examine the deep origins of and relationship among the Cenozoic volcanoes located in Northeast China(NEC).High-quality,long-period magneto...The three-dimensional(3-D)electrical structure of the upper-mantle was used to examine the deep origins of and relationship among the Cenozoic volcanoes located in Northeast China(NEC).High-quality,long-period magnetotelluric(LMT)full-impedance tensor data were collected in NEC and subjected to 3-D Gauss-Newton inversion in order to construct a resistivity model.The resulting model reveals the presence of multiple localized low-resistivity anomalies(LRAs)within the high resistivity lithosphere beneath NEC.These LRAs partially coincide with Cenozoic volcanoes on the surface.Three LRAs that form a larger,annular LRA were observed in the deep upper mantle beneath the Songliao Basin,whereas vein-like LRAs were found in the asthenosphere that connect the lithosphere and deep upper mantle.Petrophysical analyses suggest that the LRAs may have been caused by fluid-induced melting.Based on our electrical model,we propose that,following dehydration of the subducted Western Pacific slab into the mantle transition zone(MTZ)beneath NEC,the released water migrated upward and caused partial melting at the top of the MTZ beneath the Songliao Basin.Under the effect of buoyancy,the melted mantle formed a thermal upwelling that caused melting of asthenosphere before diapiring at the base of the dry lithosphere.The magma then penetrated structural boundaries(such as thinner,weaker,or activated suture zones)and finally reached the Earth's surface.This melting and upwelling of hot mantle materials may have resulted in large-scale volcanism in the region throughout the Cenozoic,including the eruption of Changbai Mountain and Halaha Volcanoes.Our results suggest that the Cenozoic NEC volcanoes may all share a similar mode of genesis,and probably originated from the annular LRA in the deep upper mantle.展开更多
The investigation aims to understand how external forces influence tectonic plate movement, causing earthquakes and volcanic eruptions. Our emphasis was on calculating perigee forces at various moon-Earth distances. O...The investigation aims to understand how external forces influence tectonic plate movement, causing earthquakes and volcanic eruptions. Our emphasis was on calculating perigee forces at various moon-Earth distances. Our initial concern is the fluctuating perigee distance between the Moon and Earth. Later, we will cover Earth’s mass fluctuations caused by crustal inhomogeneity. Gravitational force depends on distance and Earth’s mass variations. Wobbling’s Earth and translation around Sun are additional factors. Tidal variations from the Moon trigger subduction zone earthquakes. Volcanoes in the Ring of Fire are influenced by plate movement on fractures and faults.展开更多
This paper examines possible connections between volcanic eruptions and their consequences on the weather. Gas emissions, such as CO<sub>2</sub> and SO<sub>2</sub>, are vital in the troposphere...This paper examines possible connections between volcanic eruptions and their consequences on the weather. Gas emissions, such as CO<sub>2</sub> and SO<sub>2</sub>, are vital in the troposphere and change temperatures on Earth’s surface. The water vapor discharges can be moved for three atmospheric layers creating extra atmospheric rivers and disrupting the Polar vortex. All those deviations will bring consequences to the weather. It depends on the intensity, the emission type, the kind of volcano, and the location. Then, eruptions can change the atmospheric layers with sudden fluctuations unexpected for the season.展开更多
This paper searches for a connection between volcanoes and solar variability. Solar events have been investigated as possible interference with hazardous natural events on Earth. The first results pointed out that dur...This paper searches for a connection between volcanoes and solar variability. Solar events have been investigated as possible interference with hazardous natural events on Earth. The first results pointed out that during the solar minimum, the frequency and strength of volcanoes increased. However, solar variability is not the only factor disturbing volcanic eruptions;there is also seasonality. There is a double interference from the Sun on the volcanoes, one from the solar cycles, and the second is the seasons.展开更多
A detailed vibrational Raman-lR spectroscopic and diffractional analyses have been performed on basalts from two locations from Tenerife Island: (1) the Arenas Negras volcano which belongs to the historical eruptio...A detailed vibrational Raman-lR spectroscopic and diffractional analyses have been performed on basalts from two locations from Tenerife Island: (1) the Arenas Negras volcano which belongs to the historical eruption not showing visible alteration and (2) Pillow Lavas zone from Anaga Massif which shows a clearly fluid-rock interaction caused by submarine alteration. These places have been extensively studied due to its similarity with the surface of Mars. The analysis is based on the mineral detection of selected samples by a Micro-Raman study of the materials. The complementary techniques have confirmed the mineralogy detected by the Raman measurement. The results show a volcanic environment behavior with primary phases like olivine, pyroxene, and feldsparJplagioclase. Moreover, the presence of accessory minerals or secondary mineralization like phosphate, iron oxides, zeolite or carbonates shows the alteration processes on each outcrop. The variation in the crystallinity and amorphous phases is related to fluid-rock interaction caused by hydrothermal episodes and external weathering processes, which shows several analogies with the ancient volcanic activity from Mars.展开更多
Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The s...Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The succession patterns of methanotrophic communities and functions in Wudalianchi volcano forest soils could provide a basis for the study of evolutionary mechanisms between soil microorganisms,the environment,and carbon cycling of temperate forest ecosystems under climate change.In this study,the characteristics and drivers of methanotrophic community structure and function of two volcanic soils at different stages of development are analyzed,including an old volcano and a new volcano,which most recently erupted 300 years and 17-19×10^(5)years ago,respectively,and a non-volcano hills as control,based on space for time substitution and Miseq sequencing and bioinformation technology.The results showed that CH_(4) fluxes were significantly higher in old-stage volcano forest soils than new-stage forest soils and non-volcano forest soils.There were significant differences in the community composition and diversity of soil methanotrophs from different volcano forest soils.Methylococcus was the dominant genus in all soil samples.Additionally,the relative abundance of Methylococcus,along with Clonothrix,Methyloglobulus,Methylomagum,Methylomonas and Methylosarcina,were the important genera responsible for the differences in methanotrophic community structure in different volcano forest soils.The relative abundance of methanotroph belonging toγ-proteobacteria was significantly higher than that belonging toα-proteobacteria(P<0.05).Chao1,Shannon and Simpson indices of soil methanotrophic community were significantly lower in new-stage volcanos and were significantly affected by bulk density,total porosity,p H,nitrate,dissolved organic carbon and dissolved organic nitrogen.There were significant differences in community structure between new-stage and old-stage volcanoes.Bulk density and p H are important soil pr展开更多
Seafloor and buried reliefs occur along continental margin of the Ross Sea(Antarctica).These features are several kilometres wide and tens of metres high,exhibiting cone or flat-top dome shapes.Previous studies have p...Seafloor and buried reliefs occur along continental margin of the Ross Sea(Antarctica).These features are several kilometres wide and tens of metres high,exhibiting cone or flat-top dome shapes.Previous studies have proposed a volcanic or glacial origin for these formations,but these hypotheses do not account for all the available evidence.In this study,we use morpho-bathymetric data,intermediate resolution multichannel seismic and high resolution chirp profiles,as well as magnetic lines to investigate these clusters of mounds.By employing targeted processing techniques to enhance the geophysical characterization of the seafloor and buried reliefs,and to understand the underlying geological features,we propose that the reliefs are mud volcanoes.Some of these formations appear to be associated with a plumbing system,as indicated by acoustic anomalies linked to sediment containing gas.These formations are likely fed by clayey source rocks of Miocene age.Additionally,other reliefs might be the result of mud mobilisation caused by gravity instability and fluid overpressure.展开更多
Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyze...Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyzed the characteristics of submarine volcanoes and identified a total of 43 submarine volcanoes in the southern margin of the SCS,based on a newly acquired 310-km seismic reflection profile,along with previous 45 multi-channel seismic(MCS)profiles,petrological results from volcanic rocks sampled by dredging and drilling,nearby ocean bottom seismometer(OBS)wide-angle seismic profiles,and gravity and magnetic data.The study ascertains that most of these volcanoes are located in fault-block belts and graben-horst zones with strong crustal stretching and thinning.These volcanoes exhibit positive high-amplitude external seismic reflections,weak and chaotic internal seismic reflections,and are accompanied by local deformation of the surrounding sedimentary strata.Meanwhile,they have higher positive gravity anomalies and higher magnetic anomalies than the background strata.The petrological dating results show that volcanic ages are primarily in the Pliocene-Pleistocene,with geochemical characteristics indicating dominance of oceanic island basalt(OIB)-type alkali-basalts.Extensional faults have obviously spatial correspondence with post-spreading volcanism,suggesting these faults may provide conduits for submarine volcanism.The high-velocity bodies(HVBs)in the lower crust and magma underplating exist in the southern SCS,which could provide a clue of genesis for submarine volcanism.The inference is that the intensity of post-spreading volcanism in the southern margin might be affected by stretching faults,crustal thinning and magma underplating.展开更多
Young zircons from crystal-poor volcanic rocks provide the best samples for the investigations of pre-eruption magmatic processes and for testing a possible relationship between zircon Eu anomalies and crustal thickne...Young zircons from crystal-poor volcanic rocks provide the best samples for the investigations of pre-eruption magmatic processes and for testing a possible relationship between zircon Eu anomalies and crustal thickness.We report trace element chemistry and Hf-O isotope compositions of young zircons from 3 Holocene volcanoes in the Tengchong volcanic field,SE Tibet,in order to provide insights into magma evolution processes and conditions for high-K calc-alkaline volcanic rocks in a post-collisional setting.As decreasing zircon Ti content and falling temperature,zircon Hf content and Yb/Sm increase whereas zircon Eu anomaly and Th/U decrease,indicating fractional crystallization of plagioclase and zircon during magma cooling.More importantly,zircon Hf isotope ratio(sHf values)increases with decreasing zircon Ti content and falling temperature(T),suggesting gradually increasing incorporation of relatively high EHf juvenile materials in the crystallizing zircons during magma evolution.Negative correlations between zirconε_(Hf)and zirconδ^(18)O also support open-system magma evolution.Our data suggest fractional crystallization of a magma with simultaneous contamination by highε_(Hf)and lowδ^(18)O juvenile(immature)crustal materials during monotonic cooling after zircon saturation.The low-T,high-ε_(Hf)and low-δ^(18)O zircons may indicate the involvement of the early Cretaceous juvenile granitic country rocks during shallow magma evolution.Average Eu anomalies in zircons from young Tengchong lavas yield crustal thickness of 40.7±6.8 km,consistent with present crustal thickness(42.5 km)determined by geophysical methods.展开更多
Traces of tephra and increased sulfate (SO42-) concentrations were identified in the1992-1994 snow layers in 2 firn cores from South Pole. The deposition of the Pinatubo SO42-aerosol was delayed due to the long transp...Traces of tephra and increased sulfate (SO42-) concentrations were identified in the1992-1994 snow layers in 2 firn cores from South Pole. The deposition of the Pinatubo SO42-aerosol was delayed due to the long transport to the high south latitudes and its initial existence at high altitudes in the Antarctic atmosphere. Electron microscopic analyses show that the element composition of the tephra is identical to that of volcanic ash found near the Pinatubo volcano in Philippines. Detailed stratigraphic snow sampling resolved the Pinatubo signal from that of Cerro Hudson eruption during August 1991 in Chile. The South Pole sulfate flux from Pinatubo is calculated to be (10.9 ±1.1) kg·km-2, while the Hudson sulfate flux is (3.2 ± 1.1) kg·km-2. This information will be useful to estimating the magnitudes of the past volcanic eruptions recorded in Antarctic ice core.展开更多
基金partially supported by Grant-in-aid for Scientific Research(Kiban-B.11440134,Kiban-A 17204037) from Japan Society for the Promotion of Science and by some financial support from the Global Center of Excellence(G-COE) program of Tohoku University
文摘We synthesize significant recent results on the deep structure and origin of the active volcanoes in China's Mainland. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions.
基金supported by the National Project for the Development of Major Scientific Instruments(Grant No.2011YQ05006010)。
文摘The three-dimensional(3-D)electrical structure of the upper-mantle was used to examine the deep origins of and relationship among the Cenozoic volcanoes located in Northeast China(NEC).High-quality,long-period magnetotelluric(LMT)full-impedance tensor data were collected in NEC and subjected to 3-D Gauss-Newton inversion in order to construct a resistivity model.The resulting model reveals the presence of multiple localized low-resistivity anomalies(LRAs)within the high resistivity lithosphere beneath NEC.These LRAs partially coincide with Cenozoic volcanoes on the surface.Three LRAs that form a larger,annular LRA were observed in the deep upper mantle beneath the Songliao Basin,whereas vein-like LRAs were found in the asthenosphere that connect the lithosphere and deep upper mantle.Petrophysical analyses suggest that the LRAs may have been caused by fluid-induced melting.Based on our electrical model,we propose that,following dehydration of the subducted Western Pacific slab into the mantle transition zone(MTZ)beneath NEC,the released water migrated upward and caused partial melting at the top of the MTZ beneath the Songliao Basin.Under the effect of buoyancy,the melted mantle formed a thermal upwelling that caused melting of asthenosphere before diapiring at the base of the dry lithosphere.The magma then penetrated structural boundaries(such as thinner,weaker,or activated suture zones)and finally reached the Earth's surface.This melting and upwelling of hot mantle materials may have resulted in large-scale volcanism in the region throughout the Cenozoic,including the eruption of Changbai Mountain and Halaha Volcanoes.Our results suggest that the Cenozoic NEC volcanoes may all share a similar mode of genesis,and probably originated from the annular LRA in the deep upper mantle.
文摘The investigation aims to understand how external forces influence tectonic plate movement, causing earthquakes and volcanic eruptions. Our emphasis was on calculating perigee forces at various moon-Earth distances. Our initial concern is the fluctuating perigee distance between the Moon and Earth. Later, we will cover Earth’s mass fluctuations caused by crustal inhomogeneity. Gravitational force depends on distance and Earth’s mass variations. Wobbling’s Earth and translation around Sun are additional factors. Tidal variations from the Moon trigger subduction zone earthquakes. Volcanoes in the Ring of Fire are influenced by plate movement on fractures and faults.
文摘This paper examines possible connections between volcanic eruptions and their consequences on the weather. Gas emissions, such as CO<sub>2</sub> and SO<sub>2</sub>, are vital in the troposphere and change temperatures on Earth’s surface. The water vapor discharges can be moved for three atmospheric layers creating extra atmospheric rivers and disrupting the Polar vortex. All those deviations will bring consequences to the weather. It depends on the intensity, the emission type, the kind of volcano, and the location. Then, eruptions can change the atmospheric layers with sudden fluctuations unexpected for the season.
文摘This paper searches for a connection between volcanoes and solar variability. Solar events have been investigated as possible interference with hazardous natural events on Earth. The first results pointed out that during the solar minimum, the frequency and strength of volcanoes increased. However, solar variability is not the only factor disturbing volcanic eruptions;there is also seasonality. There is a double interference from the Sun on the volcanoes, one from the solar cycles, and the second is the seasons.
基金supported by the MICINN with the Project AYA-2008-04529 for the development of the Raman-LIBS combined spectrometer for the ESA-Exo Mars Mission.E.Lalla wish to thank MICINN for the FPI grants(BES-2009-024992)
文摘A detailed vibrational Raman-lR spectroscopic and diffractional analyses have been performed on basalts from two locations from Tenerife Island: (1) the Arenas Negras volcano which belongs to the historical eruption not showing visible alteration and (2) Pillow Lavas zone from Anaga Massif which shows a clearly fluid-rock interaction caused by submarine alteration. These places have been extensively studied due to its similarity with the surface of Mars. The analysis is based on the mineral detection of selected samples by a Micro-Raman study of the materials. The complementary techniques have confirmed the mineralogy detected by the Raman measurement. The results show a volcanic environment behavior with primary phases like olivine, pyroxene, and feldsparJplagioclase. Moreover, the presence of accessory minerals or secondary mineralization like phosphate, iron oxides, zeolite or carbonates shows the alteration processes on each outcrop. The variation in the crystallinity and amorphous phases is related to fluid-rock interaction caused by hydrothermal episodes and external weathering processes, which shows several analogies with the ancient volcanic activity from Mars.
基金the Special Projects for the Central Government to guide the development of local science and technology(ZY20B15)the Key Research&Development Program funding project of Heilongjiang Province(GA21C030)the Research Funds of Provincial Research Institutes of Heilongjiang Province(ZNBZ2022ZR07)。
文摘Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The succession patterns of methanotrophic communities and functions in Wudalianchi volcano forest soils could provide a basis for the study of evolutionary mechanisms between soil microorganisms,the environment,and carbon cycling of temperate forest ecosystems under climate change.In this study,the characteristics and drivers of methanotrophic community structure and function of two volcanic soils at different stages of development are analyzed,including an old volcano and a new volcano,which most recently erupted 300 years and 17-19×10^(5)years ago,respectively,and a non-volcano hills as control,based on space for time substitution and Miseq sequencing and bioinformation technology.The results showed that CH_(4) fluxes were significantly higher in old-stage volcano forest soils than new-stage forest soils and non-volcano forest soils.There were significant differences in the community composition and diversity of soil methanotrophs from different volcano forest soils.Methylococcus was the dominant genus in all soil samples.Additionally,the relative abundance of Methylococcus,along with Clonothrix,Methyloglobulus,Methylomagum,Methylomonas and Methylosarcina,were the important genera responsible for the differences in methanotrophic community structure in different volcano forest soils.The relative abundance of methanotroph belonging toγ-proteobacteria was significantly higher than that belonging toα-proteobacteria(P<0.05).Chao1,Shannon and Simpson indices of soil methanotrophic community were significantly lower in new-stage volcanos and were significantly affected by bulk density,total porosity,p H,nitrate,dissolved organic carbon and dissolved organic nitrogen.There were significant differences in community structure between new-stage and old-stage volcanoes.Bulk density and p H are important soil pr
文摘Seafloor and buried reliefs occur along continental margin of the Ross Sea(Antarctica).These features are several kilometres wide and tens of metres high,exhibiting cone or flat-top dome shapes.Previous studies have proposed a volcanic or glacial origin for these formations,but these hypotheses do not account for all the available evidence.In this study,we use morpho-bathymetric data,intermediate resolution multichannel seismic and high resolution chirp profiles,as well as magnetic lines to investigate these clusters of mounds.By employing targeted processing techniques to enhance the geophysical characterization of the seafloor and buried reliefs,and to understand the underlying geological features,we propose that the reliefs are mud volcanoes.Some of these formations appear to be associated with a plumbing system,as indicated by acoustic anomalies linked to sediment containing gas.These formations are likely fed by clayey source rocks of Miocene age.Additionally,other reliefs might be the result of mud mobilisation caused by gravity instability and fluid overpressure.
基金Supported by the National Key Research and Development Program of China(No.2022YFC3102200)the Guangdong Research Foundation(No.2019BT02H594)+3 种基金the National Natural Science Foundation of China(No.42076071)the Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0204)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA22020303)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-XH-2021-2-02)。
文摘Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyzed the characteristics of submarine volcanoes and identified a total of 43 submarine volcanoes in the southern margin of the SCS,based on a newly acquired 310-km seismic reflection profile,along with previous 45 multi-channel seismic(MCS)profiles,petrological results from volcanic rocks sampled by dredging and drilling,nearby ocean bottom seismometer(OBS)wide-angle seismic profiles,and gravity and magnetic data.The study ascertains that most of these volcanoes are located in fault-block belts and graben-horst zones with strong crustal stretching and thinning.These volcanoes exhibit positive high-amplitude external seismic reflections,weak and chaotic internal seismic reflections,and are accompanied by local deformation of the surrounding sedimentary strata.Meanwhile,they have higher positive gravity anomalies and higher magnetic anomalies than the background strata.The petrological dating results show that volcanic ages are primarily in the Pliocene-Pleistocene,with geochemical characteristics indicating dominance of oceanic island basalt(OIB)-type alkali-basalts.Extensional faults have obviously spatial correspondence with post-spreading volcanism,suggesting these faults may provide conduits for submarine volcanism.The high-velocity bodies(HVBs)in the lower crust and magma underplating exist in the southern SCS,which could provide a clue of genesis for submarine volcanism.The inference is that the intensity of post-spreading volcanism in the southern margin might be affected by stretching faults,crustal thinning and magma underplating.
基金National Natural Science Foundation of China(NSFC grant numbers 41973029,41272070)to Zou.
文摘Young zircons from crystal-poor volcanic rocks provide the best samples for the investigations of pre-eruption magmatic processes and for testing a possible relationship between zircon Eu anomalies and crustal thickness.We report trace element chemistry and Hf-O isotope compositions of young zircons from 3 Holocene volcanoes in the Tengchong volcanic field,SE Tibet,in order to provide insights into magma evolution processes and conditions for high-K calc-alkaline volcanic rocks in a post-collisional setting.As decreasing zircon Ti content and falling temperature,zircon Hf content and Yb/Sm increase whereas zircon Eu anomaly and Th/U decrease,indicating fractional crystallization of plagioclase and zircon during magma cooling.More importantly,zircon Hf isotope ratio(sHf values)increases with decreasing zircon Ti content and falling temperature(T),suggesting gradually increasing incorporation of relatively high EHf juvenile materials in the crystallizing zircons during magma evolution.Negative correlations between zirconε_(Hf)and zirconδ^(18)O also support open-system magma evolution.Our data suggest fractional crystallization of a magma with simultaneous contamination by highε_(Hf)and lowδ^(18)O juvenile(immature)crustal materials during monotonic cooling after zircon saturation.The low-T,high-ε_(Hf)and low-δ^(18)O zircons may indicate the involvement of the early Cretaceous juvenile granitic country rocks during shallow magma evolution.Average Eu anomalies in zircons from young Tengchong lavas yield crustal thickness of 40.7±6.8 km,consistent with present crustal thickness(42.5 km)determined by geophysical methods.
文摘Traces of tephra and increased sulfate (SO42-) concentrations were identified in the1992-1994 snow layers in 2 firn cores from South Pole. The deposition of the Pinatubo SO42-aerosol was delayed due to the long transport to the high south latitudes and its initial existence at high altitudes in the Antarctic atmosphere. Electron microscopic analyses show that the element composition of the tephra is identical to that of volcanic ash found near the Pinatubo volcano in Philippines. Detailed stratigraphic snow sampling resolved the Pinatubo signal from that of Cerro Hudson eruption during August 1991 in Chile. The South Pole sulfate flux from Pinatubo is calculated to be (10.9 ±1.1) kg·km-2, while the Hudson sulfate flux is (3.2 ± 1.1) kg·km-2. This information will be useful to estimating the magnitudes of the past volcanic eruptions recorded in Antarctic ice core.