The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation, but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown....The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation, but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown. Computational neuroscience studies indicate that high-frequency bursts in stimulus-driven responses can be transmitted across synapses more reliably than isolated spikes, and thus may carry accurate stimulus-related information. Our research examined whether or not adaptation affects the burst firing property of visual cortical neurons by examining changes in the burst firing changes of V1 neurons during adaptation to the preferred visual stimulus. The results show that adaptation to prolonged visual stimulation significantly decreased burst frequency (bursts/s) and burst length (spikes/burst), but increased burst duration and the interspike interval within bursts. These results suggest that the adaptation of V1 neurons to visual stimulation may result in a decrease of feedforward response gain but an increase of functional activities from lateral and/or feedback connections, which could lead to a reduction in the effectiveness of adapted neurons in transmitting information to its driven neurons.展开更多
The secondary motor cortex(M2)encodes choice-related information and plays an important role in cue-guided actions.M2 neurons innervate the dorsal striatum(DS),which also contributes to decision-making behavior,yet ho...The secondary motor cortex(M2)encodes choice-related information and plays an important role in cue-guided actions.M2 neurons innervate the dorsal striatum(DS),which also contributes to decision-making behavior,yet how M2 modulates signals in the DS to influence perceptual decision-making is unclear.Using mice performing a visual Go/No-Go task,we showed that inactivating M2 projections to the DS impaired performance by increasing the false alarm(FA)rate to the reward-irrelevant No-Go stimulus.The choice signal of M2 neurons correlated with behavioral performance,and the inactivation of M2 neurons projecting to the DS reduced the choice signal in the DS.By measuring and manipulating the responses of direct or indirect pathway striatal neurons defined by M2 inputs,we found that the indirect pathway neurons exhibited a shorter response latency to the No-Go stimulus,and inactivating their early responses increased the FA rate.These results demonstrate that the M2-to-DS pathway is crucial for suppressing inappropriate responses in perceptual decision behavior.展开更多
The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation,but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown.C...The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation,but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown.Computational neuroscience studies indicate that high-frequency bursts in stimulus-driven responses can be transmitted across synapses more reliably than isolated spikes,and thus may carry accurate stimulus-related information.Our research examined whether or not adaptation affects the burst firing property of visual cortical neurons by examining changes in the burst firing changes of V1 neurons during adaptation to the preferred visual stimulus.The results show that adaptation to prolonged visual stimulation significantly decreased burst frequency(bursts/s)and burst length(spikes/burst),but increased burst duration and the interspike interval within bursts.These results suggest that the adaptation of V1 neurons to visual stimulation may result in a decrease of feedforward response gain but an increase of functional activities from lateral and/or feedback connections,which could lead to a reduction in the effectiveness of adapted neurons in transmitting information to its driven neurons.展开更多
Several recent studies using either viral or transgenic mouse models have shown different results on whether the activation of parvalbumin-positive(PV~+)neurons expressing channelrhodopsin-2(ChR2) in the primary ...Several recent studies using either viral or transgenic mouse models have shown different results on whether the activation of parvalbumin-positive(PV~+)neurons expressing channelrhodopsin-2(ChR2) in the primary visual cortex(V1) improves the orientation-and direction-selectivity of V1 neurons. Although this discrepancy was thoroughly discussed in a follow-up communication, the issue of using different models to express ChR2 in V1 was not mentioned. We found that ChR2 was expressed in retinal ganglion cells(RGCs) and V1 neurons in ChR2fl/~+; PV-Cre mice. Our results showed that the activation of PV~+RGCs using white drifting gratings alone significantly decreased the firing rates of V1 neurons and improved their direction-and orientation-selectivity. Longduration activation of PV~+interneurons in V1 further enhanced the feature-selectivity of V1 neurons in anesthetized mice, confirming the conclusions from previous findings. These results suggest that the activation of both PV~+RGCs and V1 neurons improves feature-selectivity in mice.展开更多
基金supported by the National Natural Science Foundation of China (31171082)the Natural Science Foundation of Anhui Province (070413138)+1 种基金the Key Research Foundation of the Anhui Provincial Education Department (KJ2009A167)the Foundation of Key Laboratories of Anhui Province and the Anhui Provincial Education Department
文摘The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation, but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown. Computational neuroscience studies indicate that high-frequency bursts in stimulus-driven responses can be transmitted across synapses more reliably than isolated spikes, and thus may carry accurate stimulus-related information. Our research examined whether or not adaptation affects the burst firing property of visual cortical neurons by examining changes in the burst firing changes of V1 neurons during adaptation to the preferred visual stimulus. The results show that adaptation to prolonged visual stimulation significantly decreased burst frequency (bursts/s) and burst length (spikes/burst), but increased burst duration and the interspike interval within bursts. These results suggest that the adaptation of V1 neurons to visual stimulation may result in a decrease of feedforward response gain but an increase of functional activities from lateral and/or feedback connections, which could lead to a reduction in the effectiveness of adapted neurons in transmitting information to its driven neurons.
基金This work was supported by the STI2030-Major Projects(2021ZD0203700/2021ZD0203703)the National Natural Science Foundation of China(31771151,32171030,and 32100829),the Lingang Lab(LG202104-01-03)+1 种基金Shanghai Municipal Science and Technology Major Project(2018SHZDZX05)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32010200).
文摘The secondary motor cortex(M2)encodes choice-related information and plays an important role in cue-guided actions.M2 neurons innervate the dorsal striatum(DS),which also contributes to decision-making behavior,yet how M2 modulates signals in the DS to influence perceptual decision-making is unclear.Using mice performing a visual Go/No-Go task,we showed that inactivating M2 projections to the DS impaired performance by increasing the false alarm(FA)rate to the reward-irrelevant No-Go stimulus.The choice signal of M2 neurons correlated with behavioral performance,and the inactivation of M2 neurons projecting to the DS reduced the choice signal in the DS.By measuring and manipulating the responses of direct or indirect pathway striatal neurons defined by M2 inputs,we found that the indirect pathway neurons exhibited a shorter response latency to the No-Go stimulus,and inactivating their early responses increased the FA rate.These results demonstrate that the M2-to-DS pathway is crucial for suppressing inappropriate responses in perceptual decision behavior.
基金This work was supported by the National Natural Science Foundation of China(31171082)the Natural Science Foundation of Anhui Province(070413138)+1 种基金the Key Research Foundation of the Anhui Provincial Education Department(KJ2009A167)the Foundation of Key Laboratories of Anhui Province and the Anhui Provincial Education Department.
文摘The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation,but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown.Computational neuroscience studies indicate that high-frequency bursts in stimulus-driven responses can be transmitted across synapses more reliably than isolated spikes,and thus may carry accurate stimulus-related information.Our research examined whether or not adaptation affects the burst firing property of visual cortical neurons by examining changes in the burst firing changes of V1 neurons during adaptation to the preferred visual stimulus.The results show that adaptation to prolonged visual stimulation significantly decreased burst frequency(bursts/s)and burst length(spikes/burst),but increased burst duration and the interspike interval within bursts.These results suggest that the adaptation of V1 neurons to visual stimulation may result in a decrease of feedforward response gain but an increase of functional activities from lateral and/or feedback connections,which could lead to a reduction in the effectiveness of adapted neurons in transmitting information to its driven neurons.
基金supported by the grants of National Natural Science Foundation of China(31271158,31421091,and 31422025)the Science and Technology Commission of Shanghai Municipality,China(13PJ1401000)the Young 1000 Plan and the Ministry of Science and Technology of China(2015AA020512)
文摘Several recent studies using either viral or transgenic mouse models have shown different results on whether the activation of parvalbumin-positive(PV~+)neurons expressing channelrhodopsin-2(ChR2) in the primary visual cortex(V1) improves the orientation-and direction-selectivity of V1 neurons. Although this discrepancy was thoroughly discussed in a follow-up communication, the issue of using different models to express ChR2 in V1 was not mentioned. We found that ChR2 was expressed in retinal ganglion cells(RGCs) and V1 neurons in ChR2fl/~+; PV-Cre mice. Our results showed that the activation of PV~+RGCs using white drifting gratings alone significantly decreased the firing rates of V1 neurons and improved their direction-and orientation-selectivity. Longduration activation of PV~+interneurons in V1 further enhanced the feature-selectivity of V1 neurons in anesthetized mice, confirming the conclusions from previous findings. These results suggest that the activation of both PV~+RGCs and V1 neurons improves feature-selectivity in mice.