期刊文献+
共找到569篇文章
< 1 2 29 >
每页显示 20 50 100
Vertex-Distinguishing E-Total Coloring of the Graphs mC_3 and mC_4 被引量:15
1
作者 Xiang En CHEN Yue ZU 《Journal of Mathematical Research and Exposition》 CSCD 2011年第1期45-58,共14页
Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-colorin... Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let Cf (u) or C(u) denote the set of colors of vertex u and the edges incident to u. We call C(u) the color set of u. If C(u) ≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total-coloring of G, or a VDET coloring of G for short. The minimum number of colors required for a VDET colorings of G is denoted by X^evt(G), and it is called the VDET chromatic number of G. In this article, we will discuss vertex-distinguishing E-total colorings of the graphs mC3 and mC4. 展开更多
关键词 COLORING E-total coloring vertex-distinguishing E-total coloring vertex-distinguishing E-total chromatic number the vertex-disjoint union of m cycles with length n.
下载PDF
Vertex-distinguishing E-total Coloring of Complete Bipartite Graph K 7,n when7≤n≤95 被引量:14
2
作者 chen xiang-en du xian-kun 《Communications in Mathematical Research》 CSCD 2016年第4期359-374,共16页
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints.... Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained. 展开更多
关键词 GRAPH complete bipartite graph E-total coloring vertex-distinguishingE-total coloring vertex-distinguishing E-total chromatic number
下载PDF
Vertex-distinguishing IE-total Colorings of Cycles and Wheels 被引量:4
3
作者 CHEN XIANG-EN HE WEN-YU +2 位作者 LI ZE-PENG YAO BING Du Xian-kun 《Communications in Mathematical Research》 CSCD 2014年第3期222-236,共15页
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges i... Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper. 展开更多
关键词 GRAPH IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
On the Adjacent Vertex-distinguishing Equitable Edge Coloring of Graphs 被引量:3
4
作者 Jing-wen LI Cong WANG Zhi-wen WANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第3期615-622,共8页
Let G(V, E) be a graph. A k-adjacent vertex-distinguishing equatable edge coloring of G, k-AVEEC for short, is a proper edge coloring f if (1) C(u)≠C(v) for uv ∈ E(G), where C(u) = {f(uv)|uv ∈ E}, a... Let G(V, E) be a graph. A k-adjacent vertex-distinguishing equatable edge coloring of G, k-AVEEC for short, is a proper edge coloring f if (1) C(u)≠C(v) for uv ∈ E(G), where C(u) = {f(uv)|uv ∈ E}, and (2) for any i, j = 1, 2,… k, we have ||Ei| |Ej|| ≤ 1, where Ei = {e|e ∈ E(G) and f(e) = i}. χáve (G) = min{k| there exists a k-AVEEC of G} is called the adjacent vertex-distinguishing equitable edge chromatic number of G. In this paper, we obtain the χ áve (G) of some special graphs and present a conjecture. 展开更多
关键词 GRAPH adjacent vertex-distinguishing edge coloring adjacent vertex-distinguishing equitable edge coloring
原文传递
Vertex-distinguishing IE-total Colorings of Complete Bipartite Graphs K8,n 被引量:3
5
作者 SHI Jin CHEN Xiang-en 《Chinese Quarterly Journal of Mathematics》 2016年第2期147-154,共8页
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of verte... Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained. 展开更多
关键词 complete bipartite graphs IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
Vertex-distinguishing Total Colorings of 2Cn 被引量:6
6
作者 CHEN Xiang-en MA Yan-rong 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第3期323-330,共8页
Let f be a proper total k-coloring of a simple graph G. For any vertex x ∈ V(G), let Cf(x) denote the set of colors assigned to vertex x and the edges incident with x. If Cf(u) ≠ Cf(v) for all distinct verti... Let f be a proper total k-coloring of a simple graph G. For any vertex x ∈ V(G), let Cf(x) denote the set of colors assigned to vertex x and the edges incident with x. If Cf(u) ≠ Cf(v) for all distinct vertices u and v of V(G), then f is called a vertex- distinguishing total k-coloring of G. The minimum number k for which there exists a vertex- distinguishing total k-coloring of G is called the vertex-distinguishing total chromatic number of G and denoted by Xvt(G). The vertex-disjoint union of two cycles of length n is denoted by 2Cn. We will obtain Xvt(2Cn) in this paper. 展开更多
关键词 GRAPHS total coloring vertex-distinguishing total coloring vertex-distinguish-ing total chromatic number cycle
下载PDF
On the adjacent vertex-distinguishing acyclic edge coloring of some graphs 被引量:5
7
作者 SHIU Wai Chee CHAN Wai Hong +1 位作者 ZHANG Zhong-fu BIAN Liang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2011年第4期439-452,共14页
A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of ... A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of edges incident with v, where uv∈ E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by X'Aa(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. If a graph G has an adjacent vertex distinguishing acyclic edge coloring, then G is called adjacent vertex distinguishing acyclic. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring of some graphs and put forward some conjectures. 展开更多
关键词 Adjacent strong edge coloring adjacent vertex-distinguishing acyclic edge coloring.
下载PDF
Vertex-distinguishing VE-total Colorings of Cycles and Complete Graphs 被引量:5
8
作者 XIN Xiao-qing CHEN Xiang-en WANG Zhi-wen 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第1期92-97,共6页
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoi... Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture. 展开更多
关键词 GRAPHS VE-total coloring vertex-distinguishing VE-total coloring vertexdistinguishing VE-total chromatic number
下载PDF
Adjacent Vertex-distinguishing E-total Coloring on Some Join Graphs Cm V Gn 被引量:3
9
作者 WANG Ji-shun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期328-336,共9页
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i... Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed. 展开更多
关键词 join graph adjacent vertex-distinguishing E-total coloring adjacent vertexdistinguishing E-total chromatic number
下载PDF
Algorithm on the Optimal Vertex-Distinguishing Total Coloring of mC9
10
作者 HE Yu-ping CHEN Xiang'en 《Chinese Quarterly Journal of Mathematics》 2019年第3期242-258,共17页
Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to b... Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper. 展开更多
关键词 the UNION of GRAPHS PROPER TOTAL COLORING vertex-distinguishing TOTAL COLORING vertex-distinguishing TOTAL CHROMATIC number
下载PDF
Adjacent vertex-distinguishing total colorings of K_s∨K_t
11
作者 冯云 林文松 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期226-228,共3页
Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-dist... Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-distinguishing total coloring if the color sets of any two adjacent vertices are distinct. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G. The join graph of two vertex-disjoint graphs is the graph union of these two graphs together with all the edges that connect the vertices of one graph with the vertices of the other. The adjacent vertex-distinguishing total chromatic numbers of the join graphs of an empty graph of order s and a complete graph of order t are determined. 展开更多
关键词 adjacent vertex-distinguishing total coloring adjacent vertex-distinguishing total chromatic number joingraph
下载PDF
两类字典积图的Mycielski图的点可区别全染色
12
作者 薛国梁 田双亮 王晓琦 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期823-827,共5页
研究了当G为n阶轮,或扇,或星时,字典积图G[H]的Mycielski图M(G[H])的点可区别全染色,其中n≥6且H为m阶简单图.得到了以下结果:①若H为m阶完全图,则M(G[H])的点可区别全色数为2mn;②若H为m阶路,其中m≥4,则M(G[H])的点可区别全色数为2(n-... 研究了当G为n阶轮,或扇,或星时,字典积图G[H]的Mycielski图M(G[H])的点可区别全染色,其中n≥6且H为m阶简单图.得到了以下结果:①若H为m阶完全图,则M(G[H])的点可区别全色数为2mn;②若H为m阶路,其中m≥4,则M(G[H])的点可区别全色数为2(n-1)m+6. 展开更多
关键词 字典积 MYCIELSKI图 点可区别 全染色
原文传递
On adjacent-vertex-distinguishing total coloring of graphs 被引量:175
13
作者 ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China Department of Computer, Lanzhou Normal College, Lanzhou 730070, China +2 位作者 Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China 《Science China Mathematics》 SCIE 2005年第3期289-299,共11页
In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number... In this paper, we present a new concept of the adjacent-vertex-distinguishing total coloring of graphs (briefly, AVDTC of graphs) and, meanwhile, have obtained the adjacent-vertex-distinguishing total chromatic number of some graphs such as cycle, complete graph, complete bipartite graph, fan, wheel and tree. 展开更多
关键词 graph PROPER TOTAL coloring adjacent-vertex-distinguishing TOTAL coloring adjacent-vertex-distinguishing TOTAL CHROMATIC number.
原文传递
图的距离不大于β的任意两点可区别的边染色 被引量:96
14
作者 张忠辅 李敬文 +2 位作者 陈祥恩 程辉 姚兵 《数学学报(中文版)》 SCIE CSCD 北大核心 2006年第3期703-708,共6页
本文提出了图的距离不大于β的任意两点可区别的边染色,即D(β)-点可区别的边染色(简记为D(β)-VDPEC).并得到了一些特殊图类,如圈、完全图、完全二部图、扇、轮、树以及一些联图的D(β)-点可区别的边色数,文后提出了相关的猜想.
关键词 正常边染色 D(β)-点可区别的边色数
原文传递
D(β)-vertex-distinguishing total coloring of graphs 被引量:55
15
作者 ZHANG Zhongfu,LI Jingwen,CHEN Xiang’en,YAO Bing, WANG Wenjie & QIU Pengxiang Institute of Applied Mathematic, Lanzhou Jiaotong University, Lanzhou 730070, China College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 《Science China Mathematics》 SCIE 2006年第10期1430-1440,共11页
A new concept of the D(β)-vertex-distinguishing total coloring of graphs, i.e., the proper total coloring such that any two vertices whose distance is not larger than β have different color sets, where the color set... A new concept of the D(β)-vertex-distinguishing total coloring of graphs, i.e., the proper total coloring such that any two vertices whose distance is not larger than β have different color sets, where the color set of a vertex is the set composed of all colors of the vertex and the edges incident to it, is proposed in this paper. The D(2)-vertex-distinguishing total colorings of some special graphs are discussed, meanwhile, a conjecture and an open problem are presented. 展开更多
关键词 graph TOTAL coloring D(β)-vertex-distinguishing TOTAL coloring D(β)-vertexdistinguishing TOTAL CHROMATIC number.
原文传递
若干笛卡尔积图的邻点可区别E-全染色 被引量:24
16
作者 李沐春 张忠辅 《数学的实践与认识》 CSCD 北大核心 2009年第3期215-219,共5页
图G(V,E)的k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射,如果u,v∈V(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.得到了Pm×Pn,Pm×Cn,C... 图G(V,E)的k是一个正整数,f是V(G)∪E(G)到{1,2,…,k}的一个映射,如果u,v∈V(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.得到了Pm×Pn,Pm×Cn,Cm×Cn的邻点可区别E-全色数,其中C(u)={f(u)}∪{f(uv)uv∈E(G)}. 展开更多
关键词 笛卡尔积 邻点可区别E-全色数
原文传递
若干倍图的邻点可区别均匀全染色 被引量:20
17
作者 马刚 张忠辅 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2009年第6期1160-1164,共5页
研究一些倍图的邻点可区别均匀全染色(AVDETC),利用构造法和匹配法给出了偶阶完全图、偶阶圈、路、星和轮的倍图的邻点可区别均匀全色数,并验证了它们满足邻点可区别均匀全染色猜想(AVDETCC).
关键词 倍图 邻点可区别均匀全染色 邻点可区别均匀全色数
下载PDF
Adjacent-Vertex-Distinguishing Total Chromatic Number of P_m×K_n 被引量:16
18
作者 陈祥恩 张忠辅 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2006年第3期489-494,共6页
Let G be a simple graph. Let f be a mapping from V(G) U E(G) to {1, 2,..., k}. Let Cf(v) = {f(v)} U {f(vw)|w ∈ V(G),vw ∈ E(G)} for every v ∈ V(G). If f is a k-propertotal-coloring, and if Cf(u) ... Let G be a simple graph. Let f be a mapping from V(G) U E(G) to {1, 2,..., k}. Let Cf(v) = {f(v)} U {f(vw)|w ∈ V(G),vw ∈ E(G)} for every v ∈ V(G). If f is a k-propertotal-coloring, and if Cf(u) ≠ Cf(v) for uv ∈ V(G),uv E E(G), then f is called k-adjacentvertex-distinguishing total coloring of G(k-AVDTC of G for short). Let χat(G) = min{k|G has a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex-distinguishing total chromatic number. The adjacent-vertex-distinguishing total chromatic number on the Cartesion product of path Pm and complete graph Kn is obtained. 展开更多
关键词 GRAPH total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
下载PDF
圈与路联图点可区别Ⅰ-全染色和点可区别Ⅵ-全染色 被引量:17
19
作者 苗婷婷 王治文 陈祥恩 《大连理工大学学报》 EI CAS CSCD 北大核心 2017年第4期430-435,共6页
一个图G的Ⅰ-全染色是指若干种颜色对图G的全体顶点及边的一个分配使得任意两个相邻点及任意两条相邻边被分配到不同颜色.图G的Ⅵ-全染色是指若干种颜色对图G的全体顶点及边的一个分配使得任意两条相邻边被分配到不同颜色.对图G的一个Ⅰ... 一个图G的Ⅰ-全染色是指若干种颜色对图G的全体顶点及边的一个分配使得任意两个相邻点及任意两条相邻边被分配到不同颜色.图G的Ⅵ-全染色是指若干种颜色对图G的全体顶点及边的一个分配使得任意两条相邻边被分配到不同颜色.对图G的一个Ⅰ(Ⅵ)-全染色及图G的任意一个顶点x,用C(x)表示顶点x的颜色及x的关联边的颜色构成的集合(非多重集).如果f是图G的使用k种颜色的一个Ⅰ(Ⅵ)-全染色,并且u,v∈V(G),u≠v,有C(u)≠C(v),则称f为图G的k-点可区别Ⅰ(Ⅵ)-全染色,或k-VDITC(VDVITC).图G的点可区别Ⅰ(Ⅵ)-全染色所需最少颜色数目,称为图G的点可区别Ⅰ(Ⅵ)-全色数.利用组合分析法及构造具体染色的方法,讨论了圈与路的联图C_m∨P_n的点可区别Ⅰ(Ⅵ)-全染色问题,确定了这类图的点可区别Ⅰ(Ⅵ)-全色数,同时说明了VDITC猜想和VDVITC猜想对于这类图是成立的. 展开更多
关键词 Ⅰ-全染色 点可区别Ⅰ-全染色 点可区别Ⅰ-全色数 圈与路的联
下载PDF
n-方体的点可区别全色数的渐近性态 被引量:16
20
作者 陈祥恩 《西北师范大学学报(自然科学版)》 CAS 2005年第5期1-3,共3页
令Qn为n-方体,图G的点可区别全色数为χvt(G),那么limn→∞vχt(Qn)n=1+q*.这里q*=0.293815…是方程(x+1)x+1=2xx的唯一的正根.
关键词 n-方体 点可区别全染色 点可区别全色数
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部