Amidst the rapid development of the Internet of Things (loT), Vehicular Ad-Hoc NETwork (VANET), a typical loT application, are bringing an ever-larger number of intelligent and convenient services to the daily lives o...Amidst the rapid development of the Internet of Things (loT), Vehicular Ad-Hoc NETwork (VANET), a typical loT application, are bringing an ever-larger number of intelligent and convenient services to the daily lives of individuals. However, there remain challenges for VANETs in preserving privacy and security. In this paper, we propose the first lattice-based Double-Authentication-Preventing Ring Signature (DAPRS) and adopt it to propose a novel privacy-preserving authentication scheme for VANETs, offering the potential for security against quantum computers. The new construction is proven secure against chosen message attacks. Our scheme is more efficient than other ring signature in terms of the time cost of the message signing phase and verification phase, and also in terms of signature length. Analyses of security and efficiency demonstrate that our proposed scheme is provably secure and efficient in the application.展开更多
针对现有车载自组织网络(Vehicular Ad-hoc Network,VANET)匿名认证方案在网络规模较大时存在复杂性和执行效率方面的问题,提出了一种基于盲签名和组合公钥(Combined Public Key,CPK)算法的认证方案,并对该方案所包含的认证协议进行了...针对现有车载自组织网络(Vehicular Ad-hoc Network,VANET)匿名认证方案在网络规模较大时存在复杂性和执行效率方面的问题,提出了一种基于盲签名和组合公钥(Combined Public Key,CPK)算法的认证方案,并对该方案所包含的认证协议进行了详细描述。安全性和执行效率分析表明,与现有方案相比提出的匿名认证方案在保证用户匿名性的同时还具有较高的执行效率。展开更多
Alerting drivers about incoming emergency vehicles and their routes can greatly improve their travel time in congested cities, while reducing the risk of accidents due to distractions. This paper contributes to this g...Alerting drivers about incoming emergency vehicles and their routes can greatly improve their travel time in congested cities, while reducing the risk of accidents due to distractions. This paper contributes to this goal by proposing Messiah, an Android application capable of informing regular vehicles about incoming emergency vehicles like ambulances, police cars and fire brigades. This is made possible by creating a network of vehicles capable of directly communicating between them. The user can, therefore, take driving decisions in a timely manner by considering incoming alerts. Using the support of our GRCBox hardware, the application can rely on vehicular ad-hoc network communications in the 5 GHz band, being V2V (vehicle-to-vehicle) communication provided through a combination of Android-based smartphone and our GRCBox device. The application was tested in three different scenarios with different levels of obstruction, showing that it is capable of providing alerts up to 300 meters, and notifying vehicles within less than one second.展开更多
基金supported by the National Key R&D(973)Program of China(No.2017YFB0802000)the National Natural Science Foundation of China(Nos.61772326,61572303,61872229,and 61802239)+4 种基金the NSFC Research Fund for International Young Scientists(No.61750110528)the National Cryptography Development Fund during the 13th Five-Year Plan Period(Nos.MMJJ20170216 and MMJJ201701304)the Foundation of State Key Laboratory of Information Security(No.2017-MS-03)the Fundamental Research Funds for the Central Universities(No.GK201702004,GK201803061,and 2018CBLY006)the China Postdoctoral Science Foundation(No.2018M631121)
文摘Amidst the rapid development of the Internet of Things (loT), Vehicular Ad-Hoc NETwork (VANET), a typical loT application, are bringing an ever-larger number of intelligent and convenient services to the daily lives of individuals. However, there remain challenges for VANETs in preserving privacy and security. In this paper, we propose the first lattice-based Double-Authentication-Preventing Ring Signature (DAPRS) and adopt it to propose a novel privacy-preserving authentication scheme for VANETs, offering the potential for security against quantum computers. The new construction is proven secure against chosen message attacks. Our scheme is more efficient than other ring signature in terms of the time cost of the message signing phase and verification phase, and also in terms of signature length. Analyses of security and efficiency demonstrate that our proposed scheme is provably secure and efficient in the application.
文摘针对现有车载自组织网络(Vehicular Ad-hoc Network,VANET)匿名认证方案在网络规模较大时存在复杂性和执行效率方面的问题,提出了一种基于盲签名和组合公钥(Combined Public Key,CPK)算法的认证方案,并对该方案所包含的认证协议进行了详细描述。安全性和执行效率分析表明,与现有方案相比提出的匿名认证方案在保证用户匿名性的同时还具有较高的执行效率。
文摘Alerting drivers about incoming emergency vehicles and their routes can greatly improve their travel time in congested cities, while reducing the risk of accidents due to distractions. This paper contributes to this goal by proposing Messiah, an Android application capable of informing regular vehicles about incoming emergency vehicles like ambulances, police cars and fire brigades. This is made possible by creating a network of vehicles capable of directly communicating between them. The user can, therefore, take driving decisions in a timely manner by considering incoming alerts. Using the support of our GRCBox hardware, the application can rely on vehicular ad-hoc network communications in the 5 GHz band, being V2V (vehicle-to-vehicle) communication provided through a combination of Android-based smartphone and our GRCBox device. The application was tested in three different scenarios with different levels of obstruction, showing that it is capable of providing alerts up to 300 meters, and notifying vehicles within less than one second.