For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A...For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.展开更多
建立了包含车身侧倾特性、转向系统特性和制动特性的四轮转向车辆动力学随动操纵控制模型。考虑到作为车辆状态量之一的车辆质心侧偏角难以测量,设计了用于重构车辆状态的状态观测器。最后,基于重构的车辆状态,运用最优控制理论设计了...建立了包含车身侧倾特性、转向系统特性和制动特性的四轮转向车辆动力学随动操纵控制模型。考虑到作为车辆状态量之一的车辆质心侧偏角难以测量,设计了用于重构车辆状态的状态观测器。最后,基于重构的车辆状态,运用最优控制理论设计了四轮转向车辆随动操纵控制器,实现了所谓的线传操纵(Steer by wire)。仿真表明,反映车辆操纵性能的车辆状态量能很好地跟踪驾驶员发出的操纵指令,车辆具有独特、良好的机动性能。展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB711200)National Science and Technology Support Program of China(Grant No.2015BAG17B00)National Natural Science Foundation of China(Grant No.51475333)
文摘For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.
文摘建立了包含车身侧倾特性、转向系统特性和制动特性的四轮转向车辆动力学随动操纵控制模型。考虑到作为车辆状态量之一的车辆质心侧偏角难以测量,设计了用于重构车辆状态的状态观测器。最后,基于重构的车辆状态,运用最优控制理论设计了四轮转向车辆随动操纵控制器,实现了所谓的线传操纵(Steer by wire)。仿真表明,反映车辆操纵性能的车辆状态量能很好地跟踪驾驶员发出的操纵指令,车辆具有独特、良好的机动性能。