期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于深度信念网络的电力变压器故障分类建模 被引量:82
1
作者 石鑫 朱永利 +2 位作者 萨初日拉 王刘旺 孙岗 《电力系统保护与控制》 EI CSCD 北大核心 2016年第1期71-76,共6页
基于深度信念网络,构建了深度信念网络分类器模型,分析并用典型数据集对其分类性能进行测试。在此基础上结合电力变压器油中溶解气体分析数据,提出了基于深度信念网络分类器的变压器故障分类新方法,它使用油中溶解气体分析结果作为故障... 基于深度信念网络,构建了深度信念网络分类器模型,分析并用典型数据集对其分类性能进行测试。在此基础上结合电力变压器油中溶解气体分析数据,提出了基于深度信念网络分类器的变压器故障分类新方法,它使用油中溶解气体分析结果作为故障分类属性。对所提出的方法进行了测试,测试结果表明该方法适用于变压器故障分类,具有较强的从样本中提取特征的能力和容错特性,性能优于BP神经网络和支持向量机的方法。 展开更多
关键词 电力变压器 故障诊断 深度信念网络 无标签样本 油中溶解气体分析
下载PDF
基于k均值聚类的直推式支持向量机学习算法 被引量:12
2
作者 王立梅 李金凤 岳琪 《计算机工程与应用》 CSCD 2013年第14期144-146,共3页
针对直推式支持向量机(TSVM)学习模型求解难度大的问题,提出了一种基于k均值聚类的直推式支持向量机学习算法——TSVMKMC。该算法利用k均值聚类算法,将无标签样本分为若干簇,对每一簇样本赋予相同的类别标签,将无标签样本和有标签样本... 针对直推式支持向量机(TSVM)学习模型求解难度大的问题,提出了一种基于k均值聚类的直推式支持向量机学习算法——TSVMKMC。该算法利用k均值聚类算法,将无标签样本分为若干簇,对每一簇样本赋予相同的类别标签,将无标签样本和有标签样本合并进行直推式学习。由于TSVMKMC算法有效地降低了状态空间的规模,因此运行速度较传统算法有了很大的提高。实验结果表明,TSVMSC算法能够以较快的速度达到较高的分类准确率。 展开更多
关键词 直推式学习 支持向量机 K均值聚类 无标签样本
下载PDF
基于三支决策的主动学习方法 被引量:9
3
作者 胡峰 张苗 于洪 《控制与决策》 EI CSCD 北大核心 2019年第4期718-726,共9页
主动学习是机器学习领域研究的热点之一,旨在解决样本无标签问题.将三支决策的思想应用到主动学习中,通过引入决策函数,并基于无标签样本的不确定性,将无标签样本划分为3个不同的域:正域、负域、边界域.针对不同区域的样本进行相应处理... 主动学习是机器学习领域研究的热点之一,旨在解决样本无标签问题.将三支决策的思想应用到主动学习中,通过引入决策函数,并基于无标签样本的不确定性,将无标签样本划分为3个不同的域:正域、负域、边界域.针对不同区域的样本进行相应处理,提出一种基于三支决策理论的主动学习方法(TWD_Active方法).通过主动学习方法选出最有用的样本交给专家进行标记,扩大训练集,创建更有效的模型.与传统的被动学习相比,该方法可以选择信息量高、有代表性的样本进行打标,可避免样本的冗余添加.通过反复迭代的训练学习达到预设的迭代次数或期望的性能指标.实验结果表明,所提出的算法在F-value、AUC等评价指标上均可取得良好的效果,验证了该算法的有效性. 展开更多
关键词 主动学习 机器学习 三支决策 决策函数 无标签样本 不确定性
原文传递
基于双语对抗学习的半监督情感分类 被引量:3
4
作者 刘杰 刘欢 +1 位作者 李寿山 闫伟 《郑州大学学报(理学版)》 CAS 北大核心 2020年第2期59-63,共5页
提出了充分利用未标注样本的样本信息的双语对抗学习方法。具体而言,中文的标注样本和未标注样本分别通过不同的LSTM进行编码,再经过分类器和判别器进行对抗学习。其中,分类器的作用是使标注样本和未标注样本处于同一分布,而判别器用来... 提出了充分利用未标注样本的样本信息的双语对抗学习方法。具体而言,中文的标注样本和未标注样本分别通过不同的LSTM进行编码,再经过分类器和判别器进行对抗学习。其中,分类器的作用是使标注样本和未标注样本处于同一分布,而判别器用来区分输入样本是标注样本还是未标注样本。最后,构建一个相同的英文语料的对抗神经网络,通过联合学习中英文对抗神经网络提升半监督情感分类的性能。实验结果表明,所提出的基于双语对抗学习的半监督情感分类方法在不同标注样本数量的训练集上都取得了较好的准确率,与其他基准方法相比有明显提升。 展开更多
关键词 未标注样本 双语对抗学习 半监督情感分类
下载PDF
一种自训练框架下的三优选半监督回归算法 被引量:3
5
作者 程康明 熊伟丽 《智能系统学报》 CSCD 北大核心 2020年第3期568-577,共10页
工业生产过程数据由于主导变量分析代价等因素可能出现有标签样本少而无标签样本多的情况,为提升对无标签样本利用的准确性与充分性,提出一种自训练框架下的三优选半监督回归算法。对无标签样本与有标签样本进行优选,保证两类数据的相似... 工业生产过程数据由于主导变量分析代价等因素可能出现有标签样本少而无标签样本多的情况,为提升对无标签样本利用的准确性与充分性,提出一种自训练框架下的三优选半监督回归算法。对无标签样本与有标签样本进行优选,保证两类数据的相似性,以提高无标签样本预测的准确性;利用高斯过程回归方法对所选有标签样本集建模,预测所选无标签样本集,得到伪标签样本集;通过对伪标签样本集置信度进行判断,优选出置信度高的样本用于更新初始样本集;为了进一步提高无标签样本利用的充分性,在自训练框架下,进行多次循环筛选提高无标签样本的利用率。通过对脱丁烷塔过程实际数据的建模仿真,验证了所提方法在较少有标签样本情况下的良好预测性能。 展开更多
关键词 工业生产 无标签样本 优选 半监督回归 相似性 高斯过程回归 置信度判断 自训练 预测
下载PDF
一种双优选的半监督回归算法 被引量:3
6
作者 程康明 熊伟丽 《智能系统学报》 CSCD 北大核心 2019年第4期689-696,共8页
针对一些工业过程中存在的有标签样本少,而传统的半监督学习无法保证对无标签样本准确预测的问题,提出一种双优选的半监督回归算法。首先,确定有标签样本密集区中心,并计算无标签样本与该中心的相似度,实现对无标签样本的优选,同时根据... 针对一些工业过程中存在的有标签样本少,而传统的半监督学习无法保证对无标签样本准确预测的问题,提出一种双优选的半监督回归算法。首先,确定有标签样本密集区中心,并计算无标签样本与该中心的相似度,实现对无标签样本的优选,同时根据有标签样本间相似度优选有标签样本;然后,利用高斯过程回归方法对选出的有标签样本建立辅学习器,以对优选出的无标签样本预测标签;最后,利用这些伪标签样本提升主学习器的预测效果。通过数值例子以及实际脱丁烷塔过程数据进行建模仿真,证明了所提方法在有标签样本较少的情况下有良好的预测性能。 展开更多
关键词 无标签样本 优选 半监督回归 样本密集区中心 相似度 高斯过程回归 辅学习器 主学习器 脱丁烷塔过程 预测性能
下载PDF
基于自训练半监督学习的战场态势评估模型 被引量:3
7
作者 霍士伟 郭圣明 唐宇波 《舰船电子工程》 2021年第9期93-96,107,共5页
针对标记样本不足条件下基于机器学习的战场态势评估模型准确性不高的问题,提出了基于自训练半监督学习的战场态势评估模型。以适用于小样本条件下分类的支持向量机模型为基础分类器,通过自训练半监督学习方法利用无标签样本对支持向量... 针对标记样本不足条件下基于机器学习的战场态势评估模型准确性不高的问题,提出了基于自训练半监督学习的战场态势评估模型。以适用于小样本条件下分类的支持向量机模型为基础分类器,通过自训练半监督学习方法利用无标签样本对支持向量机模型进行辅助训练来提高模型的准确性和泛化性能。实验表明,在标记样本不足条件下,相对于只采用有标签样本的支持向量机模型来说,所提模型在评估准确率方面有较大的提高。 展开更多
关键词 态势评估 半监督学习 自训练 无标签样本
下载PDF
基于向量投影的KNN快速手写阿拉伯数字识别 被引量:2
8
作者 时恩早 《科技通报》 北大核心 2013年第12期127-129,共3页
传统K近邻(KNN)算法简单易于理解,但是求解过程中需要计算样本之间的距离,时间复杂度较高。针对这种不足,本文提出了一种基于向量投影的KNN快速算法。该算法首先计算二分类训练样本集中每一类的样本中心,并将所有的训练样本投影到样本... 传统K近邻(KNN)算法简单易于理解,但是求解过程中需要计算样本之间的距离,时间复杂度较高。针对这种不足,本文提出了一种基于向量投影的KNN快速算法。该算法首先计算二分类训练样本集中每一类的样本中心,并将所有的训练样本投影到样本中心所在的直线上。在进行样本分类时,先将无标签样本投影到样本中心所在的直线上,然后根据该无标签样本的投影点和训练样本的投影点之间的距离关系,确定样本的类别。在MNIST手写阿拉伯数字识别数据集上的仿真实验充分验证了本文算法的有效性。 展开更多
关键词 K近邻 向量投影 快速算法 无标签样本
下载PDF
一种使用未标记样本聚类信息的自训练方法 被引量:1
9
作者 刘伟涛 许信顺 《计算机应用研究》 CSCD 北大核心 2010年第9期3341-3344,共4页
为了有效地利用结构信息,提出了一种新的自学习算法,算法中利用聚类方法从自标记样本中选择可信度高的样本,同时用一个数据编辑方法从这些可信度高的样本中剔除被错标的可能性较高的样本。算法在UCI数据上进行了验证,效果和收敛速度比... 为了有效地利用结构信息,提出了一种新的自学习算法,算法中利用聚类方法从自标记样本中选择可信度高的样本,同时用一个数据编辑方法从这些可信度高的样本中剔除被错标的可能性较高的样本。算法在UCI数据上进行了验证,效果和收敛速度比对比算法要好,说明引入聚类选择候选样本是有效的。 展开更多
关键词 自训练 无标签样本 聚类 半监督学习
下载PDF
一种基于Laplacian的半监督特征选择模型 被引量:1
10
作者 吴锦华 万家山 +1 位作者 伍祥 霍清华 《重庆科技学院学报(自然科学版)》 CAS 2019年第1期85-89,共5页
针对LASSO算法及有关扩展模型忽略样本数据间关联信息的问题,以及有标签样本难以获取的实际情况,提出了一种半监督学习的特征选择模型。引入LASSO稀疏项,去除冗余特征,选择有效特征;引入Laplacian正则项,用于保留同类有标签和无标签样... 针对LASSO算法及有关扩展模型忽略样本数据间关联信息的问题,以及有标签样本难以获取的实际情况,提出了一种半监督学习的特征选择模型。引入LASSO稀疏项,去除冗余特征,选择有效特征;引入Laplacian正则项,用于保留同类有标签和无标签样本内在的几何分布信息,帮助模型选出更具有判别能力的特征集;通过相似矩阵来重构半监督特征选择模型。在UCI数据集上的分类试验结果表明,这种方法能有效提高分类性能,同时也说明样本的几何分布信息是不应被忽略的。 展开更多
关键词 学习算法 特征选择 无标签样本 LASSO算法 正则化项 半监督
下载PDF
基于改进k-近邻的直推式支持向量机学习算法 被引量:1
11
作者 李煜 冯翱 邹书蓉 《计算机与现代化》 2018年第4期22-25,共4页
针对直推式支持向量机(TSVM)需要遍历所有无标签样本花费时间长的缺点,提出一种基于改进k-近邻法的直推式支持向量机学习算法——k2TSVM。该算法首先使用k-均值聚类将无标签样本分成若干簇,然后求出每簇中心点的k近邻并根据其中正负样... 针对直推式支持向量机(TSVM)需要遍历所有无标签样本花费时间长的缺点,提出一种基于改进k-近邻法的直推式支持向量机学习算法——k2TSVM。该算法首先使用k-均值聚类将无标签样本分成若干簇,然后求出每簇中心点的k近邻并根据其中正负样本个数对无标签样本进行删减,将删减后的数据集输入直推式支持向量机进行训练。k2TSVM改善传统TSVM需要遍历所有无标签数据的缺点,有效减少训练样本规模,能够提高运行速度。实验结果表明,k2TSVM在降低运行时间的同时,能够取得比类似TSVM改进算法更好的分类结果。 展开更多
关键词 支持向量机 直推式学习 K-近邻法 K-均值聚类 无标签样本
下载PDF
基于PU学习的磷酸激酶抑制剂筛选算法
12
作者 王艺琪 《信息通信》 2016年第7期53-55,共3页
一个算法的二元分类器构建通常包含两个集合样例,其中一组为正例样本,另一组为负例样本。实际上,我们使用的很多生物数据库,如磷酸激酶抑制剂数据库并非标准数据,磷酸激酶抑制剂数据库只含有不完整的正例样本和未标注样本数据集。这些... 一个算法的二元分类器构建通常包含两个集合样例,其中一组为正例样本,另一组为负例样本。实际上,我们使用的很多生物数据库,如磷酸激酶抑制剂数据库并非标准数据,磷酸激酶抑制剂数据库只含有不完整的正例样本和未标注样本数据集。这些未标注样本中,既包含正例样本也有负例样本。文章旨在解决的问题是对于非标准数据构建标准二元分类器从而实现未知磷酸激酶抑制剂筛选。通过未标注样本概率输出,对未知磷酸激酶抑制剂进行预测。文章对该PU学习算法进行性能估计,结果显示该算法具有较高的预测性能。 展开更多
关键词 PU学习 磷酸激酶抑制剂 未标注样本 二元分类
下载PDF
凹半监督支持向量机及其应用
13
作者 冼广铭 齐德昱 +3 位作者 方群 柯庆 曾碧卿 庞雄文 《计算机工程与应用》 CSCD 北大核心 2010年第28期132-134,共3页
在训练集不足的情况下,SVM算法有待改进,以提高其评价的准确性。采用凹半监督支持向量机,利用少量标注样本和大量未标注样本进行机器学习,提高了模型预测的精度。
关键词 凹半监督支持向量机 机器学习 未标注样本
下载PDF
基于GMM-KNN-LSTM的烧结矿化学指标预测
14
作者 閤光磊 吴朝霞 +1 位作者 刘梦园 姜玉山 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期314-322,共9页
针对烧结矿化学指标检测频率低导致无标签样本无法被机器学习利用的问题,提出了一种充分利用样本中有用信息的烧结矿化学指标预测模型.首先,结合高斯混合模型(GMM)和K-近邻(KNN)算法,将无标签样本转化为有标签样本,然后与长短期记忆(LS... 针对烧结矿化学指标检测频率低导致无标签样本无法被机器学习利用的问题,提出了一种充分利用样本中有用信息的烧结矿化学指标预测模型.首先,结合高斯混合模型(GMM)和K-近邻(KNN)算法,将无标签样本转化为有标签样本,然后与长短期记忆(LSTM)单元相结合,用于预测烧结矿的总铁质量分数、FeO质量分数和碱度3个化学指标.通过与反向传播神经网络(BPNN)、循环神经网络(RNN)和LSTM三种模型对比,结果表明所建模型具有较低的预测误差.总铁质量分数和FeO质量分数的预测命中率在允许误差±0.5%内时分别达到98.73%和95.33%,碱度的预测命中率在允许误差±0.05内为98.13%,展现了较高的预测精度. 展开更多
关键词 烧结矿化学指标 预测模型 无标签样本处理算法 LSTM 数据预处理
下载PDF
Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples 被引量:1
15
作者 Xiaomeng LI Huili LU +1 位作者 Jianhong YANG Fu CHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第3期114-124,共11页
The accuracy of laser-induced breakdown spectroscopy(LIBS) quantitative method is greatly dependent on the amount of certified standard samples used for training. However, in practical applications, only limited stand... The accuracy of laser-induced breakdown spectroscopy(LIBS) quantitative method is greatly dependent on the amount of certified standard samples used for training. However, in practical applications, only limited standard samples with labeled certified concentrations are available. A novel semi-supervised LIBS quantitative analysis method is proposed, based on co-training regression model with selection of effective unlabeled samples. The main idea of the proposed method is to obtain better regression performance by adding effective unlabeled samples in semisupervised learning. First, effective unlabeled samples are selected according to the testing samples by Euclidean metric. Two original regression models based on least squares support vector machine with different parameters are trained by the labeled samples separately, and then the effective unlabeled samples predicted by the two models are used to enlarge the training dataset based on labeling confidence estimation. The final predictions of the proposed method on the testing samples will be determined by weighted combinations of the predictions of two updated regression models. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples were carried out, in which 5 samples with labeled concentrations and 11 unlabeled samples were used to train the regression models and the remaining 7 samples were used for testing. With the numbers of effective unlabeled samples increasing, the root mean square error of the proposed method went down from 1.80% to 0.84% and the relative prediction error was reduced from 9.15% to 4.04%. 展开更多
关键词 LIBS EFFECTIVE unlabeled samples CO-TRAINING SEMI-SUPERVISED LABELING CONFIDENCE estimation
下载PDF
改进的LLGC高光谱图像半监督分类 被引量:2
16
作者 盛振国 王立国 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2017年第7期1086-1092,共7页
针对高光谱数据波段多,地物标签获取代价高,带标记的样本数量少,分类过程中容易引起Hudges现象。本文提出一种基于改进的局部全局一致性(learning with local and global consistency,LLGC)算法的半监督分类方法。通过边缘采样法(margin... 针对高光谱数据波段多,地物标签获取代价高,带标记的样本数量少,分类过程中容易引起Hudges现象。本文提出一种基于改进的局部全局一致性(learning with local and global consistency,LLGC)算法的半监督分类方法。通过边缘采样法(margin sampling,MS)选取最富含信息量的无标签样本,加入到训练集来扩充训练样本;用KNN算法计算相似度进一步优选无标签样本,去除噪声点和存在的野值点;使用改进的局部全局一致性算法对无标签样本集进行分类标记,得到各类别的分类结果。实验结果表明,本文方法在充分利用无标签样本的情况下,有效地提高了带有少量标签样本的高光谱图像的分类精度。 展开更多
关键词 半监督分类 局部全局一致性 边缘采样法 KNN算法 高光谱图像 无标鉴样本集
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部