期刊文献+

基于PU学习的磷酸激酶抑制剂筛选算法

Clustering Algorithm of Kinase Inhibitors Based on PU Learning
下载PDF
导出
摘要 一个算法的二元分类器构建通常包含两个集合样例,其中一组为正例样本,另一组为负例样本。实际上,我们使用的很多生物数据库,如磷酸激酶抑制剂数据库并非标准数据,磷酸激酶抑制剂数据库只含有不完整的正例样本和未标注样本数据集。这些未标注样本中,既包含正例样本也有负例样本。文章旨在解决的问题是对于非标准数据构建标准二元分类器从而实现未知磷酸激酶抑制剂筛选。通过未标注样本概率输出,对未知磷酸激酶抑制剂进行预测。文章对该PU学习算法进行性能估计,结果显示该算法具有较高的预测性能。 A traditional binary classifiers building algorithm usually contains two sample collection, one group of positive samples and the other one is negative samples. However, many actually biological databases we used such as kinase inhibitor database is nonstandard dataset. The kinase inhibitors database contains only incomplete positive dataset and unlabeled data. Among the unlabeled dataset, positive and negative samples are both possible. The purpose of this paper is to solve the problem of binary classifiers building for untraditional dataset that used for kinase inhibitors clustering. According to the possibility output of unlabeled data, the unknown kinase inhibitors can be prediction. Further we also estimate the prediction performance of PU learning algorithm, the results reveal the PU learning algorithm owns high prediction performance.
作者 王艺琪
出处 《信息通信》 2016年第7期53-55,共3页 Information & Communications
关键词 PU学习 磷酸激酶抑制剂 未标注样本 二元分类 PU learning kinase inhibitors unlabeled samples binary classification
  • 相关文献

参考文献9

  • 1ELKAN C,NOTO K.Learning Classifiers from Only Positive and Unlabeled Data. Proceedings of the14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . 2008 被引量:1
  • 2G. Destefanis,M.T. Barge,A. Brugiapaglia,S. Tassone.??The use of principal component analysis (PCA) to characterize beef(J)Meat Science . 2000 (3) 被引量:1
  • 3Janzen Viktor,Forkert Randolf,Fleming Heather E,Saito Yoriko,Waring Michael T,Dombkowski David M,Cheng Tao,DePinho Ronald A,Sharpless Norman E,Scadden David T.Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature . 2006 被引量:1
  • 4Davis, Mindy I.,Hunt, Jeremy P.,Herrgard, Sanna,Ciceri, Pietro,Wodicka, Lisa M.,Pallares, Gabriel,Hocker, Michael,Treiber, Daniel K.,Zarrinkar, Patrick P.Comprehensive analysis of kinase inhibitor selectivity. Nature Biotechnology . 2011 被引量:1
  • 5M. Viana,X. Querol,A. Alastuey,J.I. Gil,M. Menéndez.??Identification of PM sources by principal component analysis (PCA) coupled with wind direction data(J)Chemosphere . 2006 (11) 被引量:1
  • 6Yang Peng,Li Xiao-Li,Mei Jian-Ping,Kwoh Chee-Keong,Ng See-Kiong.Positive-unlabeled learning for disease gene identification. Bioinformatics . 2012 被引量:1
  • 7Beth Apsel,Jimmy A Blair,Beatriz Gonzalez,Tamim M Nazif,Morri E Feldman,Brian Aizenstein,Randy Hoffman,Roger L Williams,Kevan M Shokat,Zachary A Knight.Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nature Chemical Biology . 2008 被引量:1
  • 8Bergers Gabriele,Song Steven,Meyer-Morse Nicole,Bergsland Emily,Hanahan Douglas.Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. The Journal of Clinical Investigation . 2003 被引量:1
  • 9Li Z R,Lin H H,Han L Y,Jiang L,Chen X,Chen Y Z.PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Research . 2006 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部