在2DPCA的基础上提出一种随机采样的2DPCA人脸识别方法--RRS-2DPCA.同传统通过对特征或投影向量进行采样的方法不同的是,RRS-2DPCA(Row Random Sampling 2DPCA)将随机采样建立于图像的行向量集中,然后在行向量子集中执行2DPCA.在ORL、Y...在2DPCA的基础上提出一种随机采样的2DPCA人脸识别方法--RRS-2DPCA.同传统通过对特征或投影向量进行采样的方法不同的是,RRS-2DPCA(Row Random Sampling 2DPCA)将随机采样建立于图像的行向量集中,然后在行向量子集中执行2DPCA.在ORL、Yale和AR人脸数据集上进行实验,结果表明RRS-2DPCA不仅具很好的识别性能和运算效率,而且对参数具有很大的稳定性.另外针对2DPCA和RRS-2DPCA对光线、遮挡等不鲁棒问题,进一步提出了局部区域随机采样的2DPCA方法LRRS-2DPCA(Local Row Random Sampling 2DPCA),将RRS-2DPCA执行在人脸图像的局部区域中.实验结果表明LRRS-2DPCA不仅具有较好的鲁棒性更大大的提高了RRS-2DPCA的识别性能.展开更多
为降低SVM人脸识别算法对样本进行训练和识别的时间,提出了一种改进的基于差空间的双向2DPCA(Bidirectional two dimensions PCA)和SVM相结合的人脸识别算法。该方法充分考虑了表情和光照对人脸图像的影响,不但利用小波变换对人脸图像...为降低SVM人脸识别算法对样本进行训练和识别的时间,提出了一种改进的基于差空间的双向2DPCA(Bidirectional two dimensions PCA)和SVM相结合的人脸识别算法。该方法充分考虑了表情和光照对人脸图像的影响,不但利用小波变换对人脸图像进行预处理,而且成功地把类内平均引入到双向2DPCA的计算中,并结合了SVM在分类识别方面的优势,有效节省了算法所需的时间。在Yale人脸库上的实验表明,它不但可以提高识别率,而且所用时间明显减少。展开更多
文摘在2DPCA的基础上提出一种随机采样的2DPCA人脸识别方法--RRS-2DPCA.同传统通过对特征或投影向量进行采样的方法不同的是,RRS-2DPCA(Row Random Sampling 2DPCA)将随机采样建立于图像的行向量集中,然后在行向量子集中执行2DPCA.在ORL、Yale和AR人脸数据集上进行实验,结果表明RRS-2DPCA不仅具很好的识别性能和运算效率,而且对参数具有很大的稳定性.另外针对2DPCA和RRS-2DPCA对光线、遮挡等不鲁棒问题,进一步提出了局部区域随机采样的2DPCA方法LRRS-2DPCA(Local Row Random Sampling 2DPCA),将RRS-2DPCA执行在人脸图像的局部区域中.实验结果表明LRRS-2DPCA不仅具有较好的鲁棒性更大大的提高了RRS-2DPCA的识别性能.
文摘为降低SVM人脸识别算法对样本进行训练和识别的时间,提出了一种改进的基于差空间的双向2DPCA(Bidirectional two dimensions PCA)和SVM相结合的人脸识别算法。该方法充分考虑了表情和光照对人脸图像的影响,不但利用小波变换对人脸图像进行预处理,而且成功地把类内平均引入到双向2DPCA的计算中,并结合了SVM在分类识别方面的优势,有效节省了算法所需的时间。在Yale人脸库上的实验表明,它不但可以提高识别率,而且所用时间明显减少。