期刊文献+

随机采样的2DPCA人脸识别方法 被引量:2

Two-dimensional PCA Based on Random Sampling for Face Recogniton
下载PDF
导出
摘要 在2DPCA的基础上提出一种随机采样的2DPCA人脸识别方法--RRS-2DPCA.同传统通过对特征或投影向量进行采样的方法不同的是,RRS-2DPCA(Row Random Sampling 2DPCA)将随机采样建立于图像的行向量集中,然后在行向量子集中执行2DPCA.在ORL、Yale和AR人脸数据集上进行实验,结果表明RRS-2DPCA不仅具很好的识别性能和运算效率,而且对参数具有很大的稳定性.另外针对2DPCA和RRS-2DPCA对光线、遮挡等不鲁棒问题,进一步提出了局部区域随机采样的2DPCA方法LRRS-2DPCA(Local Row Random Sampling 2DPCA),将RRS-2DPCA执行在人脸图像的局部区域中.实验结果表明LRRS-2DPCA不仅具有较好的鲁棒性更大大的提高了RRS-2DPCA的识别性能. Proposed a 2DPCA method based on random sampling,termed as Row Random Sampling 2DPCA(RRS-2DPCA),for face recognition.Different from those traditional face recognition methods which sampling from feature or feature vector,RRS-2DPCA constructs random sampling on row vector sets and then performs 2DPCA on those row vector sets.The experimental results on ORL,Yale and AR face databases show that RRS-2DPCA not only obtains very good recogntion accuracy and computational efficiency,but also is stable to the number of random sampling row corresponding to different database.In additional,in order to relax the nonrobust of 2DPCA and RRS-2DPCA to occlusion,we further proposed local region random sampling 2DPCA(LRRS-2DPCA),which performs RRS-2DPCA on local regions of face image.The experimental results indicates that LRRS-2DPCA gains better both relative robustness and good recognition accuracy than RRS-2DPCA.
作者 朱玉莲 彭星
出处 《小型微型计算机系统》 CSCD 北大核心 2011年第12期2461-2465,共5页 Journal of Chinese Computer Systems
基金 南京航空航天大学基本科研业务费专项科研项目(NS2010233)资助
关键词 人脸识别 二维主成分分析(2DPCA) 局部区域 随机采样 face recognition two-dimensional PCA(2DPCA) local region random sampling
  • 相关文献

参考文献20

  • 1Turk M, Pent,and A. Eigenfaces for recognition [ J ]. Journal of Cognitive Neuroscience, 1991,3 ( 1 ) :71-86. 被引量:1
  • 2Bclhumcur P N, Hespanha J P, Kricgman D J. Eigcnfaccs vsfishcrfacess: recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7) :711-720. 被引量:1
  • 3Yang J, et al. Two-dimensional PCA: a new approach to appearancc-based face representation and recognition[ J]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2004,26 ( 1 ) : 131-137. 被引量:1
  • 4Yang J, Yang J Y. From image vector to rrmtrix:a straightforward image projection technique-IMPCA vs PCA [ J ]. Pattern Recognition, 2002,35(9) :1997-1999. 被引量:1
  • 5Wang X G, Tang X O. Subspace analysis using random mixture models[ C]. In IEEE Conference on Computer Vision and Pattern Recognition, 2005. 被引量:1
  • 6Wang X G,Tang X O. Random sampling LDA for face recognition [ C]. In IEEE Conference on Computer Vision and Pattern Recognition, 2004. 被引量:1
  • 7Wang X G,Tang X O. Random sampling for subspace face recognition[J]. International Journal of Computer Vision,2006,70 ( 11 ) : 91-104. 被引量:1
  • 8Nitesh V Chawla, Bowyer K. Random subspaces and subsampling for 2-D face recognition [ C]. In IEEE Conference on Computer Vision and Pattern Recognition ,2005. 被引量:1
  • 9Zhang X,Jia Y. A linear discriminant analysis framework 'based on random subspace for face recognition [ J ]. Pattern Recognition, 2007,40(9) :2585-2591. 被引量:1
  • 10Zhu Y L,Liu J,Chen S C. Semi-random subspace method for face recognition[J]. Image and Vision Computing, 2009,27 (9): 1358-1370. 被引量:1

同被引文献26

  • 1Anand C, Lawrance R. Algorithm for Face Recognition Us- ing HMM and SVD Coefficients [J]. Artificial Intelligent Systems and Machine Learning, 2013, 5(3): 125-130. 被引量:1
  • 2Whither Biometrics Committee. Biometric recognition: challenges and opportunities [M]. National Academies Press, 2010. 被引量:1
  • 3Chan C H, Tahir M A, Kittler J, et al. Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors[J]. Pattern Analy- sis and Machine Intelligence, IEEE Transactions on, 2013, 35(5): 1164-1177. 被引量:1
  • 4Mashhoori A, Zolghadri Jahromi M. Block-wise two-direc- tional 2DPCA with ensemble learning for face recognition [J]. Neurocomputing, 2013, 10(8): 111-117. 被引量:1
  • 5Xu W, Lee E J. Face Recognition Using Wavelets Trans- form and 2D PCA by SVM Classifier [J]. International Jour- nal of Multimedia & Ubiquitous Engineering, 2014, 9(3): 243-249. 被引量:1
  • 6Li D, Tang X, Pedrycz W. Face recognition using decimated redundant discrete wavelet transforms [J]. Machine Vision and Applications, 2012, 23(2): 391-401. 被引量:1
  • 7Zhang H, Jonathan Wu Q M, Chow T W S, et al. A two-di- mensional Neighborhood Preserving Projection for appear- ance-based face recognition [J]. Pattern Recognition, 2012, 45(5): 1866-1876. 被引量:1
  • 8Eslamloueyan R. Designing a hierarchical neural network based on fuzzy clustering for fault diagnosis of the Tennes- see - Eastman process [J]. Applied Soft Computing, 2011, 11(1): 1407-1415. 被引量:1
  • 9Chan C H, Tahir M A, Kittler J, et al. Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors[J]. Pattern Analy- sis and Machine Intelligence, IEEE Transactions on, 2013, 35(5):1164-1177. 被引量:1
  • 10Pandya J M, Rathod D, Jadav J J. A survey of face recognition approach [J]. International Journal of Engineering Re- search and Applications (IJERA), 2013, 3(1): 632-635. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部