A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convecti...A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.展开更多
Porous ceramics usually require high mechanical strength and maximized porosity simultaneously,while for conventional particle grading strategies,it is highly challenging to meet both demands.To this end,a reverse par...Porous ceramics usually require high mechanical strength and maximized porosity simultaneously,while for conventional particle grading strategies,it is highly challenging to meet both demands.To this end,a reverse particle grading strategy was developed based on the linear packing model by unusually introducing coarse particles(d50=16μm)into a fine particle(d50=5μm)matrix.Following the extrusion and sintering process,tubular porous SiC ceramic supports with improved mechanical strength were successfully fabricated.The effects of coarse particles on the rheological properties of the ceramic paste and the macroscopic properties and microstructure of the SiC supports were systematically investigated.With an increase in the content of coarse SiC particles to 30 wt%,the pressure generated during extrusion decreased from 5.5±0.2 to 1.3±0.1 MPa.Notably,the bending strength of the tubular supports increased from 36.6±5.6 to 49.1±4.5 MPa when 20 wt%coarse powder was incorporated.The notably improved mechanical strength was attributed to the distribution of coarse particles that prolonged the route of crack deflection.Additionally,the optimized tubular supports had an average pore size of 1.2±0.1μm,an open porosity of 45.1%±1.6%,and a water permeability of 7163±150 L/(m2·h·bar)as well as good alkali and acid corrosion resistance.Significantly,the strategy was proven to be feasible for the scale-up fabrication of 19-channel SiC tubular porous ceramic supports.展开更多
Ethane steam cracking process in an industrial reactor was investigated.An one-demsional(1D)steady-state model was developed firstly by using an improved molecular reaction scheme and was then simulated in Aspen Plus....Ethane steam cracking process in an industrial reactor was investigated.An one-demsional(1D)steady-state model was developed firstly by using an improved molecular reaction scheme and was then simulated in Aspen Plus.A comparison of model results with industrial data and previously reported results showed that the model can predict the process kinetics more accurately.In addition,the validated model was used to study the effects of different process variables,including coil outlet temperature(COT),steam-to-ethane ratio and residence time on ethane conversion,ethylene selectivity,products yields,and coking rate.Finally,steady-state optimization was conducted to the operation of industrial reactor.The COT and steam-to-ethane ratio were taken as decision variables to maximize the annual operational profit.展开更多
The aminolysis of ethyl acetate was promoted significantly via continuous reaction in a tubular reactor.Npropylacetamide was thus synthesized without presence of solvent and catalyst.The optimum conditions were obtain...The aminolysis of ethyl acetate was promoted significantly via continuous reaction in a tubular reactor.Npropylacetamide was thus synthesized without presence of solvent and catalyst.The optimum conditions were obtained as follows:the reaction temperature is 218℃,the reaction pressure is 3.5 MPa,the molar ratio(ethyl acetate:N-propylamine)is 1:1,and the residence time is 350 min.Accordingly,the conversion of ethyl acetate is up to94.8%.Furthermore,the kinetics of the rapid reaction stage(when the conversion of ethyl acetate is 20%-80%)can be expressed as Ink=-4629.441/T+2.1366,and the apparent activation energy is Ea=38489 J·mol-1.展开更多
Most of Biodiesel, a clean burning alternative fuels for diesel engines is made from renewable agricultural feedstock, such as rapeseed oil, soybean oil etc., but less expensive biodiesel can also be made from waste o...Most of Biodiesel, a clean burning alternative fuels for diesel engines is made from renewable agricultural feedstock, such as rapeseed oil, soybean oil etc., but less expensive biodiesel can also be made from waste oils and fats, including recycled restaurant grease and animal fats. Because of the eating habit of the nation and diet culture in china,?restaurant-kitchen garbage is increasingly serious and has negative impact on environment and food security. The utilization of waste oils and fats to biodiesel provide a promising way of how to appropriately and effectively dispose of restaurant-kitchen garbage. This paper first reviews the development status of biodiesel industry, then introduces the novel technology of tubular reaction for producing biodiesel from waste oils and fats on the typical industrialization case in Kunshan. All these efforts are expected to provide a viable development path for our waste oil to produce biodiesel and worth reference to waste oils and fats recycling and reuse.展开更多
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.
基金the financial support provided by the National Key R&D Program of China(No.2022YFB3805002)the National Natural Science Foundation of China(No.22308150)+5 种基金Jiangsu Provincial Department of Science and Technology(No.BK20232010)the Research Programs of the Science and Technology of Guangxi Zhuang Autonomous Region(No.GUIKE-AA22117015-1)the Natural Science Foundation of Jiangsu Province(No.BK20220345)the Key R&D Program of Jiangsu Province(No.BE2023360)the Key R&D Project of Nanjing Jiangbei New Area(No.ZDYF202203)the Youth Science and Technology Talents Lifting Project of Jiangsu Association of Science and Technology(No.105019ZS_007).
文摘Porous ceramics usually require high mechanical strength and maximized porosity simultaneously,while for conventional particle grading strategies,it is highly challenging to meet both demands.To this end,a reverse particle grading strategy was developed based on the linear packing model by unusually introducing coarse particles(d50=16μm)into a fine particle(d50=5μm)matrix.Following the extrusion and sintering process,tubular porous SiC ceramic supports with improved mechanical strength were successfully fabricated.The effects of coarse particles on the rheological properties of the ceramic paste and the macroscopic properties and microstructure of the SiC supports were systematically investigated.With an increase in the content of coarse SiC particles to 30 wt%,the pressure generated during extrusion decreased from 5.5±0.2 to 1.3±0.1 MPa.Notably,the bending strength of the tubular supports increased from 36.6±5.6 to 49.1±4.5 MPa when 20 wt%coarse powder was incorporated.The notably improved mechanical strength was attributed to the distribution of coarse particles that prolonged the route of crack deflection.Additionally,the optimized tubular supports had an average pore size of 1.2±0.1μm,an open porosity of 45.1%±1.6%,and a water permeability of 7163±150 L/(m2·h·bar)as well as good alkali and acid corrosion resistance.Significantly,the strategy was proven to be feasible for the scale-up fabrication of 19-channel SiC tubular porous ceramic supports.
基金The financial support provided by the Project of National Natural Science Foundation of China(21822809&21978256)the Fundamental Research Funds for the Central Universitiesthe Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2018-K23)are gratefully acknowledged.
文摘Ethane steam cracking process in an industrial reactor was investigated.An one-demsional(1D)steady-state model was developed firstly by using an improved molecular reaction scheme and was then simulated in Aspen Plus.A comparison of model results with industrial data and previously reported results showed that the model can predict the process kinetics more accurately.In addition,the validated model was used to study the effects of different process variables,including coil outlet temperature(COT),steam-to-ethane ratio and residence time on ethane conversion,ethylene selectivity,products yields,and coking rate.Finally,steady-state optimization was conducted to the operation of industrial reactor.The COT and steam-to-ethane ratio were taken as decision variables to maximize the annual operational profit.
基金financial support from the National Natural Science Foundation of China(21476194)the National Key Research and Development Program of China(2016YFB0301800).
文摘The aminolysis of ethyl acetate was promoted significantly via continuous reaction in a tubular reactor.Npropylacetamide was thus synthesized without presence of solvent and catalyst.The optimum conditions were obtained as follows:the reaction temperature is 218℃,the reaction pressure is 3.5 MPa,the molar ratio(ethyl acetate:N-propylamine)is 1:1,and the residence time is 350 min.Accordingly,the conversion of ethyl acetate is up to94.8%.Furthermore,the kinetics of the rapid reaction stage(when the conversion of ethyl acetate is 20%-80%)can be expressed as Ink=-4629.441/T+2.1366,and the apparent activation energy is Ea=38489 J·mol-1.
文摘Most of Biodiesel, a clean burning alternative fuels for diesel engines is made from renewable agricultural feedstock, such as rapeseed oil, soybean oil etc., but less expensive biodiesel can also be made from waste oils and fats, including recycled restaurant grease and animal fats. Because of the eating habit of the nation and diet culture in china,?restaurant-kitchen garbage is increasingly serious and has negative impact on environment and food security. The utilization of waste oils and fats to biodiesel provide a promising way of how to appropriately and effectively dispose of restaurant-kitchen garbage. This paper first reviews the development status of biodiesel industry, then introduces the novel technology of tubular reaction for producing biodiesel from waste oils and fats on the typical industrialization case in Kunshan. All these efforts are expected to provide a viable development path for our waste oil to produce biodiesel and worth reference to waste oils and fats recycling and reuse.