In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
以Workbench为仿真平台建立了液态金属型故障电流触发器的稳态电热场模型,进行了额定及过载通流条件下的温升仿真计算,并制作了额定1 k A的装置样机进行温升试验。试验结果显示额定电流条件下试验结果与仿真一致性较好,能准确计算出触...以Workbench为仿真平台建立了液态金属型故障电流触发器的稳态电热场模型,进行了额定及过载通流条件下的温升仿真计算,并制作了额定1 k A的装置样机进行温升试验。试验结果显示额定电流条件下试验结果与仿真一致性较好,能准确计算出触发器各点温升;但过载条件下,当电流为1.2 k A时装置试品起弧分断,表明此时必须考虑电磁力作用影响。所建模型可用于指导液态金属型故障电流触发器的温升特性设计。展开更多
Characteristics of electron emission induced by a surface flashover trigger device in a low-pressure trigger switch were investigated. A test method to measure the emitted charges from the trigger device was developed...Characteristics of electron emission induced by a surface flashover trigger device in a low-pressure trigger switch were investigated. A test method to measure the emitted charges from the trigger device was developed, and the factors affecting the emitted charges were analyzed. The results indicated that the major emitted charges from the trigger device were induced by surface plasma generated by surface flashover occurring on the trigger dielectric material. The emitted charges and the peak emission current increased linearly with the change in the trigger voltage and bias voltage. The emitted charges collected from the anode were affected by the gap distance. However, the emitted charges were less affected by the anode diameter. Furthermore, the emitted charges and the peak emission current decreased rapidly with the increase in gas pressure in a range from 0 Pa to 100 Pa, and then remained stable or changed slightly when the increase in gas pressure up to 2400 Pa.展开更多
A novel dual-directional silicon controlled rectifier(DDSCR) device with embedded PNP structure(DDSCR-PNP) is proposed for electrostatic discharge(ESD) protection, which has greatly reduced latch-up risk owing t...A novel dual-directional silicon controlled rectifier(DDSCR) device with embedded PNP structure(DDSCR-PNP) is proposed for electrostatic discharge(ESD) protection, which has greatly reduced latch-up risk owing to the improved holding voltage(V_h/. Firstly, the working mechanism of the DDSCR-PNP is analyzed. The theoretical analysis indicates that the proposed device possesses good voltage clamp ability due to the embedded PNP(PNP_2). Then, experimental devices are fabricated in a 0.35 m bipolar-CMOS-DMOS process and measured with a Barth 4002 transmission line pulse testing system. The results show that the V_h of DDSCR-PNP is much higher than that of the conventional DDSCR, and can be further increased by adjusting the P well width.However, the reduced leakage current(I_L/ of the DDSCR-PNP shows obvious fluctuations when the P well width is increased to more than 12 m. Finally, the factors influencing V_h and I_L are investigated by Sentaurus simulations. The results verify that the lateral PNP_2 helps to increase V_h and decrease I_L. When the P well width is further increased, the effect of the lateral PNP_2 is weakened, causing an increased I_L. The proposed DDSCR-PNP provides an effective and attractive ESD protection solution for high-voltage integrated circuits.展开更多
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
文摘以Workbench为仿真平台建立了液态金属型故障电流触发器的稳态电热场模型,进行了额定及过载通流条件下的温升仿真计算,并制作了额定1 k A的装置样机进行温升试验。试验结果显示额定电流条件下试验结果与仿真一致性较好,能准确计算出触发器各点温升;但过载条件下,当电流为1.2 k A时装置试品起弧分断,表明此时必须考虑电磁力作用影响。所建模型可用于指导液态金属型故障电流触发器的温升特性设计。
基金supported by the New Century Talent Foundation of Ministry of Education of China (NCET-08-0438)
文摘Characteristics of electron emission induced by a surface flashover trigger device in a low-pressure trigger switch were investigated. A test method to measure the emitted charges from the trigger device was developed, and the factors affecting the emitted charges were analyzed. The results indicated that the major emitted charges from the trigger device were induced by surface plasma generated by surface flashover occurring on the trigger dielectric material. The emitted charges and the peak emission current increased linearly with the change in the trigger voltage and bias voltage. The emitted charges collected from the anode were affected by the gap distance. However, the emitted charges were less affected by the anode diameter. Furthermore, the emitted charges and the peak emission current decreased rapidly with the increase in gas pressure in a range from 0 Pa to 100 Pa, and then remained stable or changed slightly when the increase in gas pressure up to 2400 Pa.
基金supported by the Fundamental Research Funds for the Central Universities(No.JUSRP51323B)the Joint Innovation Project of Jiangsu Province(No.BY2013015-19)+2 种基金the Summit of the Six Top Talents Program of Jiangsu Province(No.DZXX-053)the Graduate Student Innovation Program for Universities of Jiangsu Province(Nos.KYLX_1119SJZZ_0148)
文摘A novel dual-directional silicon controlled rectifier(DDSCR) device with embedded PNP structure(DDSCR-PNP) is proposed for electrostatic discharge(ESD) protection, which has greatly reduced latch-up risk owing to the improved holding voltage(V_h/. Firstly, the working mechanism of the DDSCR-PNP is analyzed. The theoretical analysis indicates that the proposed device possesses good voltage clamp ability due to the embedded PNP(PNP_2). Then, experimental devices are fabricated in a 0.35 m bipolar-CMOS-DMOS process and measured with a Barth 4002 transmission line pulse testing system. The results show that the V_h of DDSCR-PNP is much higher than that of the conventional DDSCR, and can be further increased by adjusting the P well width.However, the reduced leakage current(I_L/ of the DDSCR-PNP shows obvious fluctuations when the P well width is increased to more than 12 m. Finally, the factors influencing V_h and I_L are investigated by Sentaurus simulations. The results verify that the lateral PNP_2 helps to increase V_h and decrease I_L. When the P well width is further increased, the effect of the lateral PNP_2 is weakened, causing an increased I_L. The proposed DDSCR-PNP provides an effective and attractive ESD protection solution for high-voltage integrated circuits.