Cholesterol is an essential component of the mammalian plasma membrane because it promotes membrane stability without comprising membrane fluidity. Given this important cellular role, cholesterol levels are tightly co...Cholesterol is an essential component of the mammalian plasma membrane because it promotes membrane stability without comprising membrane fluidity. Given this important cellular role, cholesterol levels are tightly controlled at multiple levels. It has been clearly shown that cholesterol redistribution and depletion from the sperm membrane is a key part of the spermatozoon's preparation for fertilization. Some factors that regulate these events are described (e.g., bicarbonate, calcium) but the mechanisms underlying cholesterol export are poorly understood. How does a hydrophobic cholesterol molecule inserted in the sperm plasma membrane enter the energetically unfavorable aqueous surroundings? This review will provide an overview of knowledge in this area and highlight our gaps in understanding. The overall aim is to better understand cholesterol redistribution in the sperm plasma membrane, its relation to the possible activation of a cholesterol transporter and the role of cholesterol acceptors. Armed with such knowledlze, sl)erm handlin~ techniques can be adapted to better prepare spermatozoa for in vitro and in vivo fertilization.展开更多
Charge transfer and transport properties are crucial in the photophysical process of exciton dissociation and recombination at the donor/acceptor(D/A)interface.Herein,machine learning(ML)is applied to predict the char...Charge transfer and transport properties are crucial in the photophysical process of exciton dissociation and recombination at the donor/acceptor(D/A)interface.Herein,machine learning(ML)is applied to predict the charge transfer state energy(ECT)and identify the relationship between ECT and intermolecular packing structures sampled from molecular dynamics(MD)simulations on fullerene-and non-fullerene-based systems with different D/A ratios(RDA),oligomer sizes,and D/A pairs.The gradient boosting regression(GBR)exhibits satisfactory performance(r=0.96)in predicting ECT withπ-packing related features,aggregation extent,backbone of donor,and energy levels of frontier molecular orbitals.The charge transport property affected byπ-packing with different RDA has also been investigated by space-charge-limited current(SCLC)measurement and MD simulations.The SCLC results indicate an improved hole transport of non-fullerene system PM6/Y6 with RDA of 1.2:1 in comparison with the 1:1 counterpart,which is mainly attributed to the bridge role of donor unit in Y6.The reduced energetic disorder is correlated with the improved miscibility of polymer with RDA increased from 1:1 to 1.2:1.The morphology-related features are also applicable to other complicated systems,such as perovskite solar cells,to bridge the gap between device performance and microscopic packing structures.展开更多
This paper summarizes our recent works on theoretical modelling of molecular packing and electronic processes in small-molecule organic solar cells.Firstly,we used quantum-chemical calculations to illustrate exciton-d...This paper summarizes our recent works on theoretical modelling of molecular packing and electronic processes in small-molecule organic solar cells.Firstly,we used quantum-chemical calculations to illustrate exciton-dissociation and charge-recombination processes at the DTDCTB/C_(60) interface and particularly emphasized the major role of hot charge-transfer states in the exciton-dissociation processes.Then,we systematically analyzed the influence of DTDCTB surfaces with different features on the vacuum vapor deposition growth and packing morphologies of C_(60) via atomistic molecular dynamics simulations,and found that the formation of crystalline fullerene is the result of an integrated impact of stability,landscape,and molecular orientation of the substrate surfaces.Also,we investigated the impact of different film-processing conditions,such as solvent evaporation rates and thermal annealing,on molecular packing configurations in a neat small-molecule donor material,DPP(TBFu)_2,and discussed the correlation between charge mobility and molecular packing via atomistic simulations in combination with electronic-structure calculations and kinetic Monte Carlo simulations.展开更多
文摘Cholesterol is an essential component of the mammalian plasma membrane because it promotes membrane stability without comprising membrane fluidity. Given this important cellular role, cholesterol levels are tightly controlled at multiple levels. It has been clearly shown that cholesterol redistribution and depletion from the sperm membrane is a key part of the spermatozoon's preparation for fertilization. Some factors that regulate these events are described (e.g., bicarbonate, calcium) but the mechanisms underlying cholesterol export are poorly understood. How does a hydrophobic cholesterol molecule inserted in the sperm plasma membrane enter the energetically unfavorable aqueous surroundings? This review will provide an overview of knowledge in this area and highlight our gaps in understanding. The overall aim is to better understand cholesterol redistribution in the sperm plasma membrane, its relation to the possible activation of a cholesterol transporter and the role of cholesterol acceptors. Armed with such knowledlze, sl)erm handlin~ techniques can be adapted to better prepare spermatozoa for in vitro and in vivo fertilization.
基金supported by the National Natural Science Foundation of China(Nos.22033004 and 21873045).
文摘Charge transfer and transport properties are crucial in the photophysical process of exciton dissociation and recombination at the donor/acceptor(D/A)interface.Herein,machine learning(ML)is applied to predict the charge transfer state energy(ECT)and identify the relationship between ECT and intermolecular packing structures sampled from molecular dynamics(MD)simulations on fullerene-and non-fullerene-based systems with different D/A ratios(RDA),oligomer sizes,and D/A pairs.The gradient boosting regression(GBR)exhibits satisfactory performance(r=0.96)in predicting ECT withπ-packing related features,aggregation extent,backbone of donor,and energy levels of frontier molecular orbitals.The charge transport property affected byπ-packing with different RDA has also been investigated by space-charge-limited current(SCLC)measurement and MD simulations.The SCLC results indicate an improved hole transport of non-fullerene system PM6/Y6 with RDA of 1.2:1 in comparison with the 1:1 counterpart,which is mainly attributed to the bridge role of donor unit in Y6.The reduced energetic disorder is correlated with the improved miscibility of polymer with RDA increased from 1:1 to 1.2:1.The morphology-related features are also applicable to other complicated systems,such as perovskite solar cells,to bridge the gap between device performance and microscopic packing structures.
基金the financial support from the National Natural Science Foundation of China(No.91333117)the National Basic Research (973) Program of the Ministry of Science and Technology of China(No.2014CB643506)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB12020200)
文摘This paper summarizes our recent works on theoretical modelling of molecular packing and electronic processes in small-molecule organic solar cells.Firstly,we used quantum-chemical calculations to illustrate exciton-dissociation and charge-recombination processes at the DTDCTB/C_(60) interface and particularly emphasized the major role of hot charge-transfer states in the exciton-dissociation processes.Then,we systematically analyzed the influence of DTDCTB surfaces with different features on the vacuum vapor deposition growth and packing morphologies of C_(60) via atomistic molecular dynamics simulations,and found that the formation of crystalline fullerene is the result of an integrated impact of stability,landscape,and molecular orientation of the substrate surfaces.Also,we investigated the impact of different film-processing conditions,such as solvent evaporation rates and thermal annealing,on molecular packing configurations in a neat small-molecule donor material,DPP(TBFu)_2,and discussed the correlation between charge mobility and molecular packing via atomistic simulations in combination with electronic-structure calculations and kinetic Monte Carlo simulations.