期刊文献+

基于提高运输能力的箱式包装设计

Box style packing design to improve the transport ability
下载PDF
导出
摘要 对现有的某些箱式包装的特点进行了分析,提出了一种旨在提高运输工具运力的包装设计方法。该方法结合运输工具的有效装载空间,按国家标准合理的确定包装箱的包装尺寸,使运输工具的运输能力得到提高。 Some of the packing - box design methods are analyzed and a new method of packing - box design to improve the transport ability of carrier is put forward. This method determines the external dimen- sion of packing - box according to package standards and the side of vehicle car. The new packing - box can improve the transport ability of carrier.
机构地区 军械工程学院
出处 《包装工程》 CAS CSCD 北大核心 2005年第5期129-130,135,共3页 Packaging Engineering
关键词 运输能力 箱式包装 包装设计 transport competency packing - box packing design
  • 相关文献

参考文献8

二级参考文献11

  • 1[1]ARP R M. Reducibility among combinatorial problems [A]. Complexity of Computations [C], New York:Plenum, 1972.85-103. 被引量:1
  • 2[2]COFFMAN JR E G, GARAY M R, JOHNSON D S.Approximation algorithms for bin packing: A survery [A]. Approximation Algorithms For NP-hard Problems [C]. Boston: PWS Publishers, 1996.46-93. 被引量:1
  • 3[3]VAZIRANI Vijay V. Approximation algorithms[M].Hong Kong: Springer, 2001. 被引量:1
  • 4[4]KNUTH D E. The art of computer programming: sorting and search[ M]. Boston: Addison-Wesley, 1998. 被引量:1
  • 5[5]LABBe M, LAPORTE G, MARTELLO S. Upper bounds algorithms for themaximum cardinality bin packing problem [J]. European Journal of Operational Research, 2003, 149:489-490. 被引量:1
  • 6[6]JANSEN K, SOLIS-OBA R. An asymptotic fully polynomial time approximation schemefor bin covering[J].Theoretical Computer Science, 2003, 306:543-551. 被引量:1
  • 7[7]KANG J, PARK S. Algorithms for the variable sized bin packing problem [J]. European Journal of Operational Research, 2003, 147: 365-372. 被引量:1
  • 8[1]Garey M R, Johnson D S. Computers and intractability: a guide to the theory of NP - completeness [ M]. SanFrancisco: Freeman, 1979. 被引量:1
  • 9[2]Richey M B. Improved bounds for harmonic - based binpacking algorithms [J]. Discrete Applied Mathematics,1991, (34): 203 - 227. 被引量:1
  • 10[3]Fernandez Wdelavega, Lueker G S. Bin- packing can be solved within 1 + ε in linear time [J]. Combinatorics, 1981,(1): 349 - 355. 被引量:1

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部