r3+-doped mullite transparent glass ceramic is a new material for tunable lasers and luminescent solar concentrators. Mullite transparent glass ceramic can be obtained from glass not containing any nucleator agents af...r3+-doped mullite transparent glass ceramic is a new material for tunable lasers and luminescent solar concentrators. Mullite transparent glass ceramic can be obtained from glass not containing any nucleator agents after appropriate heat treatment. In this paper, crystallization behavior of the above glass coramic was studied by XRD, IR and TEM. The results indicate that the crystallization mechanism can be assigned to phase separation and subsequent crystallization, and the ocurrence of mullite causes a new infared absorption peak in the range 600-630cm-1 in the IR spectra.展开更多
The frequency and temperature dependent electrical conductivity measurements for heat-treated binary glass system with composition of (lO0-x)Bi203-xBaTi03 (x = 20, 30, 40 and 50, in mol%) were carried out. The gla...The frequency and temperature dependent electrical conductivity measurements for heat-treated binary glass system with composition of (lO0-x)Bi203-xBaTi03 (x = 20, 30, 40 and 50, in mol%) were carried out. The glass was prepared by melt quenching technique and their corresponding glass-ceramic nanocomposites were obtained by suitable heat treatment. Nanostructured behavior and electrical properties of these glasses and their corresponding glass-ceramic nanocomposites were studied. X-ray diffraction (XRD) and differential scanning calorimetry confirmed the amorphous nature of the glasses. Moreover, XRD patterns of the samples indicate nanocrystallites embedded in the glass matrix. The Fourier transform infrared spectroscopy (FT-IR) spectral analysis showed that the band positions of glass system are within the wave number range of Bi06, Bi03 and Ti06 structural units. It is observed that the electrical conductivity is enhanced by 102-103 times in the transparent glass-ceramic nanocomposite phase. With further heat treatment, the conductivity decreased considerably in the stage of glass-ceramic nanocomposite phase as compared with the glassy phase sample. Therefore, partially devitrified phase is more suitable as cathode material in secondary batteries compared to its vitreous or fully crystalline counterpart. The conduction mechanism was confirmed to obey the adiabatic small polaron hopping (SPH). AC conductivity measurements were performed as a function of temperature and frequency, showing a very slow increasing rate at low temperatures and then a fast rate at higher temperatures.展开更多
Transparent glass ceramics were prepared from the phosphosilicate system by melt-quenching devitrification(MQD) method, i.e., nanocrystals spontaneously form during cooling of the melts. Introduction of 2.5 wt.% Yb2...Transparent glass ceramics were prepared from the phosphosilicate system by melt-quenching devitrification(MQD) method, i.e., nanocrystals spontaneously form during cooling of the melts. Introduction of 2.5 wt.% Yb2O3 and 0.5 wt.% Er2O3 into the glass melt induced the change of type and concentration of crystals. The comparison of rheological and thermodynamic properties of both undoped and Yb^3+/Er^3+ doped melts showed that addition of Yb^3+/Er^3+ oxides caused increase of liquid fragility, and degree of medium-range order. In addition, the thermodynamic barriers for nucleation ΔG* as a function of reduced temperature T/Tm were calculated with an assumption of wetting angle θ=90o, Yb^3+/Er^3+ doped melt tended to firstly nucleate as compared to undoped melt at small undercooling.展开更多
Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceram...Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the tempera,ture-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.展开更多
文摘r3+-doped mullite transparent glass ceramic is a new material for tunable lasers and luminescent solar concentrators. Mullite transparent glass ceramic can be obtained from glass not containing any nucleator agents after appropriate heat treatment. In this paper, crystallization behavior of the above glass coramic was studied by XRD, IR and TEM. The results indicate that the crystallization mechanism can be assigned to phase separation and subsequent crystallization, and the ocurrence of mullite causes a new infared absorption peak in the range 600-630cm-1 in the IR spectra.
文摘The frequency and temperature dependent electrical conductivity measurements for heat-treated binary glass system with composition of (lO0-x)Bi203-xBaTi03 (x = 20, 30, 40 and 50, in mol%) were carried out. The glass was prepared by melt quenching technique and their corresponding glass-ceramic nanocomposites were obtained by suitable heat treatment. Nanostructured behavior and electrical properties of these glasses and their corresponding glass-ceramic nanocomposites were studied. X-ray diffraction (XRD) and differential scanning calorimetry confirmed the amorphous nature of the glasses. Moreover, XRD patterns of the samples indicate nanocrystallites embedded in the glass matrix. The Fourier transform infrared spectroscopy (FT-IR) spectral analysis showed that the band positions of glass system are within the wave number range of Bi06, Bi03 and Ti06 structural units. It is observed that the electrical conductivity is enhanced by 102-103 times in the transparent glass-ceramic nanocomposite phase. With further heat treatment, the conductivity decreased considerably in the stage of glass-ceramic nanocomposite phase as compared with the glassy phase sample. Therefore, partially devitrified phase is more suitable as cathode material in secondary batteries compared to its vitreous or fully crystalline counterpart. The conduction mechanism was confirmed to obey the adiabatic small polaron hopping (SPH). AC conductivity measurements were performed as a function of temperature and frequency, showing a very slow increasing rate at low temperatures and then a fast rate at higher temperatures.
基金Project supported by the Natural Science Fund of Elite Young Researchers of Shandong Province(2008BS04004)
文摘Transparent glass ceramics were prepared from the phosphosilicate system by melt-quenching devitrification(MQD) method, i.e., nanocrystals spontaneously form during cooling of the melts. Introduction of 2.5 wt.% Yb2O3 and 0.5 wt.% Er2O3 into the glass melt induced the change of type and concentration of crystals. The comparison of rheological and thermodynamic properties of both undoped and Yb^3+/Er^3+ doped melts showed that addition of Yb^3+/Er^3+ oxides caused increase of liquid fragility, and degree of medium-range order. In addition, the thermodynamic barriers for nucleation ΔG* as a function of reduced temperature T/Tm were calculated with an assumption of wetting angle θ=90o, Yb^3+/Er^3+ doped melt tended to firstly nucleate as compared to undoped melt at small undercooling.
文摘Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the tempera,ture-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.