This paper presents the design and testing of a 15 Gbps non-return-to-zero(NRZ),30 Gbps 4-level pulse amplitude modulation(PAM4)configurable laser diode driver(LDD)implemented in 0.15-μm GaAs E-mode pHEMT technology....This paper presents the design and testing of a 15 Gbps non-return-to-zero(NRZ),30 Gbps 4-level pulse amplitude modulation(PAM4)configurable laser diode driver(LDD)implemented in 0.15-μm GaAs E-mode pHEMT technology.The driver bandwidth is enhanced by utilizing cross-coupled neutralization capacitors across the output stage.The output transmission-line back-termination,which absorbs signal reflections from the imperfectly matched load,is performed passively with on-chip 50-Ωresistors.The proposed 30 Gbps PAM4 LDD is implemented by combining two 15 Gbps-NRZ LDDs,as the high and low amplification paths,to generate PAM4 output current signal with levels of 0,40,80,and 120 mA when driving 25-Ωlasers.The high and low amplification paths can be used separately or simultaneously as a 15 Gbps-NRZ LDD.The measurement results show clear output eye diagrams at speeds of up to 15 and 30 Gbps for the NRZ and PAM4 drivers,respectively.At a maximum output current of 120 mA,the driver consumes 1.228 W from a single supply voltage of-5.2 V.The proposed driver shows a high current driving capability with a better output power to power dissipation ratio,which makes it suitable for driving high current distributed feedback(DFB)lasers.The chip occupies a total area of 0.7×1.3 mm^(2).展开更多
The basic theory and principle of the artificial Controlled Source Radio Magneto Telluric(CSRMT) method is studied and a novel CSRMT transmitter in kH z frequency band is designed. The specific circuit and measured re...The basic theory and principle of the artificial Controlled Source Radio Magneto Telluric(CSRMT) method is studied and a novel CSRMT transmitter in kH z frequency band is designed. The specific circuit and measured results of some key modules in transmitter are presented, and some outdoor experimental tests have been carried out, which shows that the completed prototype of transmitter can generate a continuous sine current with frequency up to 35.33 k Hz, peak-to-peak amplitude up to 40 A, and realize a reliable transmitting mode with multi-frequency and high-current. The transmitter has a wide operating band, large magnetic moment and high waveform fidelity, and can meet the requirements of shallow geological exploration with high-resolution.展开更多
大规模相控阵是解决毫米波无线传输距离受限的核心关键技术.传统的毫米波相控阵通常基于化合物半导体芯片加以实现,该类芯片成本高昂且难以实现系统单片集成,极大地限制了传统相控阵的应用范围.本文报道了基于CMOS成熟工艺的毫米波芯片...大规模相控阵是解决毫米波无线传输距离受限的核心关键技术.传统的毫米波相控阵通常基于化合物半导体芯片加以实现,该类芯片成本高昂且难以实现系统单片集成,极大地限制了传统相控阵的应用范围.本文报道了基于CMOS成熟工艺的毫米波芯片设计及收发通道数为4096(4096发射/4096接收)的超大规模集成相控阵实现技术.CMOS体硅工艺具有集成度高、成本低廉等优势,但面临有源器件高频性能差、无源器件及互连线高频损耗大、高低温性能差异大等一系列技术瓶颈.通过引入电流复用跨导增强型低噪声放大器、基于新型版图结构的高效率功率放大器、矢量调制型数控无源移相器、基于电容补偿的超宽带衰减器、紧凑型功分器,以及高低温自适应偏置电路等技术,可以较好地解决CMOS体硅工艺所面临的上述瓶颈问题.基于65 nm CMOS体硅工艺,所实现的Ka频段CMOS相控阵芯片噪声系数为3.0 d B,发射通道效率为15%,无需校准即可实现精确幅相控制,相关测试结果表明所研制的低成本相控阵芯片具有集成度高、幅相控制精确等优势,噪声系数等关键技术指标接近砷化镓工艺.以此为基础,本文给出了基于多层混压PCB工艺的1024发射/1024接收超大规模"集成相控阵"设计技术,并将其扩展至4096发射/4096接收相控阵规模,最后给出了低成本、高集成宽带卫星移动通信终端在车载和船载条件下的示范应用结果.展开更多
文摘This paper presents the design and testing of a 15 Gbps non-return-to-zero(NRZ),30 Gbps 4-level pulse amplitude modulation(PAM4)configurable laser diode driver(LDD)implemented in 0.15-μm GaAs E-mode pHEMT technology.The driver bandwidth is enhanced by utilizing cross-coupled neutralization capacitors across the output stage.The output transmission-line back-termination,which absorbs signal reflections from the imperfectly matched load,is performed passively with on-chip 50-Ωresistors.The proposed 30 Gbps PAM4 LDD is implemented by combining two 15 Gbps-NRZ LDDs,as the high and low amplification paths,to generate PAM4 output current signal with levels of 0,40,80,and 120 mA when driving 25-Ωlasers.The high and low amplification paths can be used separately or simultaneously as a 15 Gbps-NRZ LDD.The measurement results show clear output eye diagrams at speeds of up to 15 and 30 Gbps for the NRZ and PAM4 drivers,respectively.At a maximum output current of 120 mA,the driver consumes 1.228 W from a single supply voltage of-5.2 V.The proposed driver shows a high current driving capability with a better output power to power dissipation ratio,which makes it suitable for driving high current distributed feedback(DFB)lasers.The chip occupies a total area of 0.7×1.3 mm^(2).
文摘The basic theory and principle of the artificial Controlled Source Radio Magneto Telluric(CSRMT) method is studied and a novel CSRMT transmitter in kH z frequency band is designed. The specific circuit and measured results of some key modules in transmitter are presented, and some outdoor experimental tests have been carried out, which shows that the completed prototype of transmitter can generate a continuous sine current with frequency up to 35.33 k Hz, peak-to-peak amplitude up to 40 A, and realize a reliable transmitting mode with multi-frequency and high-current. The transmitter has a wide operating band, large magnetic moment and high waveform fidelity, and can meet the requirements of shallow geological exploration with high-resolution.
文摘大规模相控阵是解决毫米波无线传输距离受限的核心关键技术.传统的毫米波相控阵通常基于化合物半导体芯片加以实现,该类芯片成本高昂且难以实现系统单片集成,极大地限制了传统相控阵的应用范围.本文报道了基于CMOS成熟工艺的毫米波芯片设计及收发通道数为4096(4096发射/4096接收)的超大规模集成相控阵实现技术.CMOS体硅工艺具有集成度高、成本低廉等优势,但面临有源器件高频性能差、无源器件及互连线高频损耗大、高低温性能差异大等一系列技术瓶颈.通过引入电流复用跨导增强型低噪声放大器、基于新型版图结构的高效率功率放大器、矢量调制型数控无源移相器、基于电容补偿的超宽带衰减器、紧凑型功分器,以及高低温自适应偏置电路等技术,可以较好地解决CMOS体硅工艺所面临的上述瓶颈问题.基于65 nm CMOS体硅工艺,所实现的Ka频段CMOS相控阵芯片噪声系数为3.0 d B,发射通道效率为15%,无需校准即可实现精确幅相控制,相关测试结果表明所研制的低成本相控阵芯片具有集成度高、幅相控制精确等优势,噪声系数等关键技术指标接近砷化镓工艺.以此为基础,本文给出了基于多层混压PCB工艺的1024发射/1024接收超大规模"集成相控阵"设计技术,并将其扩展至4096发射/4096接收相控阵规模,最后给出了低成本、高集成宽带卫星移动通信终端在车载和船载条件下的示范应用结果.