对工业纯钛TA2在不同温度以及不同压力下进行压缩蠕变实验,分析了工业纯钛TA2压缩稳态蠕变以及压缩瞬时蠕变行为,研究发现工业纯钛TA2在低温低应力条件下存在蠕变饱和现象。通过对蠕变数据分析计算得到TA2在353~523 K之间的蠕变激活能Q...对工业纯钛TA2在不同温度以及不同压力下进行压缩蠕变实验,分析了工业纯钛TA2压缩稳态蠕变以及压缩瞬时蠕变行为,研究发现工业纯钛TA2在低温低应力条件下存在蠕变饱和现象。通过对蠕变数据分析计算得到TA2在353~523 K之间的蠕变激活能Qc=30 k J/mol,且稳态蠕变速率6)εs与应力σ之间满足幂律方程;运用一级动力学反应理论求得不同条件下工业纯钛TA2压缩瞬时蠕变参数,并建立了瞬时蠕变参数与稳态蠕变速率的关系。展开更多
Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavio...Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavior at such low strain rates, a high-resolution strain measurement using the helicoid spring specimen technique was employed in a fine-grained Al-5356 alloy at temperatures ranging from 0.47Tm to 0.74Tm (Tm: melting point). To clarify transient creep mechanism at such low strain rates, transmission electron microscopy (TEM) was used in microstructure observation of crept specimens. The abnormal transient creep, high temperature strengthening at T〉Tp (Tp: the phase transformation temperature, 0.58Tm) or intermediate temperature softening at 0.4Tm〈T£Tp and double-normal type (creep curves including double work-hardening stages) at T=Tp, were firstly observed. The substructure observation in a crept specimen at T=0.58Tm and e=1×10-4 shows pile-up dislocations including many small jogs with equal interval, and dislocations emitted from grain boundaries. The b-Al3Mg2 phase dissolves under the condition of testing temperatures higher than 523 K, which causes solid-solution quantity of Mg atoms to increase. Therefore, the “abnormal transient creep” may be related to the difference of solid solution strengthening caused by phase change during the creep tests.展开更多
文摘对工业纯钛TA2在不同温度以及不同压力下进行压缩蠕变实验,分析了工业纯钛TA2压缩稳态蠕变以及压缩瞬时蠕变行为,研究发现工业纯钛TA2在低温低应力条件下存在蠕变饱和现象。通过对蠕变数据分析计算得到TA2在353~523 K之间的蠕变激活能Qc=30 k J/mol,且稳态蠕变速率6)εs与应力σ之间满足幂律方程;运用一级动力学反应理论求得不同条件下工业纯钛TA2压缩瞬时蠕变参数,并建立了瞬时蠕变参数与稳态蠕变速率的关系。
基金Project(12JCYBJC32100)supported by Tianjin Research Program of Application Foundation and Advanced Technologyin part by Grants-in-Aid from the Japan Society for the Promotion of Science(JSPS)
文摘Transient creep at very low strain rates (less than 10-10 s-1) is still unclear. The traditional uniaxial creep testing is less useful due to unsatisfied resolution strain (~10-6). To study transient creep behavior at such low strain rates, a high-resolution strain measurement using the helicoid spring specimen technique was employed in a fine-grained Al-5356 alloy at temperatures ranging from 0.47Tm to 0.74Tm (Tm: melting point). To clarify transient creep mechanism at such low strain rates, transmission electron microscopy (TEM) was used in microstructure observation of crept specimens. The abnormal transient creep, high temperature strengthening at T〉Tp (Tp: the phase transformation temperature, 0.58Tm) or intermediate temperature softening at 0.4Tm〈T£Tp and double-normal type (creep curves including double work-hardening stages) at T=Tp, were firstly observed. The substructure observation in a crept specimen at T=0.58Tm and e=1×10-4 shows pile-up dislocations including many small jogs with equal interval, and dislocations emitted from grain boundaries. The b-Al3Mg2 phase dissolves under the condition of testing temperatures higher than 523 K, which causes solid-solution quantity of Mg atoms to increase. Therefore, the “abnormal transient creep” may be related to the difference of solid solution strengthening caused by phase change during the creep tests.