Two types of titanium/steel composite plates with the same thickness were manufactured by parallel explosive welding and double vertical explosive welding and rolling, respectively. The comparative analysis of microst...Two types of titanium/steel composite plates with the same thickness were manufactured by parallel explosive welding and double vertical explosive welding and rolling, respectively. The comparative analysis of microstructure showed that the interface of double vertical explosive welding plate (B plate) tended to be straight while the interface of parallel explosive welding plate (A plate) was wavy bonding. Defects near the interface of B plate were extruded, and the thickness of the diffusion layer of B plate was thicker under the effects of preheating temperature and press-working. Comparative tests of mechanical properties indicated that the tensile shear strength of B plate was lower while its micro-hardness was higher. Specimens of these two types of plates were neither separated nor cracked after bending up to 180° in the three-point bending test. From the microstructural observation of tensile fracture characteristics, A plate had strong toughness fracture while B plate had mainly ductile fracture with cleavage fracture as the supplement. Macroscopically, the tensile strength of the latter was 7.9% less than that of the former. However, both satisfied the Chinese standard of tensile strength.展开更多
Ti-Zr-Cu-Ni amorphous filler with good performance is suitable for joining TC and TB titanium alloy, but its melting temperature is higher than 882.5°C, the α→β phase transition temperature of TA2, which makes...Ti-Zr-Cu-Ni amorphous filler with good performance is suitable for joining TC and TB titanium alloy, but its melting temperature is higher than 882.5°C, the α→β phase transition temperature of TA2, which makes the ductility of TA2 fall and the microstructure of the joint coarse. In this paper, Ti-Zr-Cu-Ni amorphous filler was redesigned and optimized by using orthogonal experiment to obtain three easy-to-use Zr-Ti-Ni-Cu amorphous fillers with low melting points and good plasticity. The fast cooling equipment was used to fabricate the brazing filler foils to implement the braze welding of TA2 and Q235 with high frequency inductance. The results indicate that all the brazing foils are amorphous structure with lower melting temperature, for example, Zr52Ti22Ni18Cu8 filler’s is 538°C. The technical parameters in brazing welding are: welding temperature T = 800°C;heating electric current I =25 A;heating time t = 15 s and holding time t = 15 s, in the case of these conditions, the jointing head shear strength of TA2/Zr52Ti24Ni13Cu11/Q235 is 139 MPa. Fracture is mainly located in the brazing seam. The white brittle intermetallic TiFe, TiFe2 and enhancement TiC spread in the center zone of brazing seam.展开更多
Some of the major manufacturing processes and corresponding mechanical properties of titanium clad steel plates were analyzed, and the consequences of research, manufacturing, and application of titanium clad steel pl...Some of the major manufacturing processes and corresponding mechanical properties of titanium clad steel plates were analyzed, and the consequences of research, manufacturing, and application of titanium clad steel plates in both markets of China and overseas were also summarized. As an economical and environmentally friendly technology, the roll bonding process is expected to become the next-generation mainstream process for the manufacturing of titanium clad steel plate. Some of the crucial and most important technical problems of this particular process, including vacuum sealing technology, surface treatment process technology, application of a transition layer, and rolling process, were discussed along with the advantageous mechanical properties and life-cycle economy of these plates processed by this technology. Finally, the market needs, application trends, and requirements of titanium clad steel plate were also considered from industries of petrochemical, shipbuilding, marine, and electric power.展开更多
基金This project was sponsored by the National Natural Science Foundation of China (No. 51541112) and Special Fund Achievement Transformation Projects in Jiangsu of China (No. BA2012030).
文摘Two types of titanium/steel composite plates with the same thickness were manufactured by parallel explosive welding and double vertical explosive welding and rolling, respectively. The comparative analysis of microstructure showed that the interface of double vertical explosive welding plate (B plate) tended to be straight while the interface of parallel explosive welding plate (A plate) was wavy bonding. Defects near the interface of B plate were extruded, and the thickness of the diffusion layer of B plate was thicker under the effects of preheating temperature and press-working. Comparative tests of mechanical properties indicated that the tensile shear strength of B plate was lower while its micro-hardness was higher. Specimens of these two types of plates were neither separated nor cracked after bending up to 180° in the three-point bending test. From the microstructural observation of tensile fracture characteristics, A plate had strong toughness fracture while B plate had mainly ductile fracture with cleavage fracture as the supplement. Macroscopically, the tensile strength of the latter was 7.9% less than that of the former. However, both satisfied the Chinese standard of tensile strength.
文摘Ti-Zr-Cu-Ni amorphous filler with good performance is suitable for joining TC and TB titanium alloy, but its melting temperature is higher than 882.5°C, the α→β phase transition temperature of TA2, which makes the ductility of TA2 fall and the microstructure of the joint coarse. In this paper, Ti-Zr-Cu-Ni amorphous filler was redesigned and optimized by using orthogonal experiment to obtain three easy-to-use Zr-Ti-Ni-Cu amorphous fillers with low melting points and good plasticity. The fast cooling equipment was used to fabricate the brazing filler foils to implement the braze welding of TA2 and Q235 with high frequency inductance. The results indicate that all the brazing foils are amorphous structure with lower melting temperature, for example, Zr52Ti22Ni18Cu8 filler’s is 538°C. The technical parameters in brazing welding are: welding temperature T = 800°C;heating electric current I =25 A;heating time t = 15 s and holding time t = 15 s, in the case of these conditions, the jointing head shear strength of TA2/Zr52Ti24Ni13Cu11/Q235 is 139 MPa. Fracture is mainly located in the brazing seam. The white brittle intermetallic TiFe, TiFe2 and enhancement TiC spread in the center zone of brazing seam.
文摘Some of the major manufacturing processes and corresponding mechanical properties of titanium clad steel plates were analyzed, and the consequences of research, manufacturing, and application of titanium clad steel plates in both markets of China and overseas were also summarized. As an economical and environmentally friendly technology, the roll bonding process is expected to become the next-generation mainstream process for the manufacturing of titanium clad steel plate. Some of the crucial and most important technical problems of this particular process, including vacuum sealing technology, surface treatment process technology, application of a transition layer, and rolling process, were discussed along with the advantageous mechanical properties and life-cycle economy of these plates processed by this technology. Finally, the market needs, application trends, and requirements of titanium clad steel plate were also considered from industries of petrochemical, shipbuilding, marine, and electric power.