This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities...This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities that combine a non-periodic inspection scheme with age-replacement are implemented.When the system is detected to be in the minor defective stage by an inspection for the first time,place an order and shorten the inspection interval.If the system has deteriorated to a severe defective stage,it is either repaired imperfectly or replaced by a new spare.However,an immediate replacement is required once the system fails,the maximal number of imperfect maintenance(IPM)is satisfied or its age reaches to a pre-specified threshold.In consideration of the spare’s availability as needed,there are three types of decisions,i.e.,an immediate or a delayed replacement by a regular ordered spare,an immediate replacement by an expedited ordered spare with a relative higher cost.Then,some mutually independent and exclusive renewal events at the end of a renewal cycle are discussed,and the optimization model of such a joint policy is further developed by minimizing the long-run expected cost rate to find the optimal inspection and age-replacement intervals,and the maximum number of IPM.A Monte-Carlo based integration method is also designed to solve the proposed model.Finally,a numerical example is given to illustrate the proposed joint optimization policy and the performance of the Monte-Carlo based integration method.展开更多
This paper proposes a joint inspection-based maintenance and spare ordering optimization policy that considers the problem of integrated inspection,preventive maintenance,spare ordering,and quality control for a four-...This paper proposes a joint inspection-based maintenance and spare ordering optimization policy that considers the problem of integrated inspection,preventive maintenance,spare ordering,and quality control for a four-state single-unit manufacturing system.When an inspection detects a minor defect,a second phase inspection is initiated and a regular order is placed.Product quality begins to deteriorate when the system undergoes a severe defect.To counter this,an advanced replacement of the minor defective system is carried out at the Jth second phase inspection.If a severe defect is recognized prior to the Jth inspection,or if system failure occurs,preventive or corrective replacement is executed.The timeliness of replacement depends on the availability of spare.We adopt two modes of ordering:a regular order and an emergency order.Meanwhile,a threshold level is introduced to determine whether an emergency order is preferred even when the regular order is already ordered but has not yet arrived.The optimal joint inspection-based maintenance and spare ordering policy is formulated by minimizing the expected cost per unit time.A simulation algorithm is proposed to obtain the optimal two-phase inspection interval,threshold level and advanced replacement interval.Results from several numerical examples demonstrate that,in terms of the expected cost per unit time,our proposed model is superior to some existing models.展开更多
The effect of multiple span suspension structure on the mechanical response of bridge deck pavement was studied, and finite element analysis (FEM) of stress and strain of pavement according to the bridge floor system ...The effect of multiple span suspension structure on the mechanical response of bridge deck pavement was studied, and finite element analysis (FEM) of stress and strain of pavement according to the bridge floor system features of super-long and high flexibility was made. Meanwhile, the FEM results were compared with those of the single span suspension structure. Three-stage analytic hierarchy process (AHP) is developed to analyze the mechanical response including whole bridge analysis, partial beams section analysis and orthotropic plate analysis. The most unfavorable load position was determined by the numerical solutions acquired from each stage to study the main mechanical index of multiple span suspension structure. The FEM results showed that the mechanical response numerical solutions by using the three-stage AHP are greater than those by simplified boundary condition, and the force condition of multiple span suspension structure is worse than that of the single span suspension structure.展开更多
基金supported by the Naitonal Natural Science Foundation of China(71701038)China Ministry of Education Humanities and Social Sciences Research Youth Fund Project(16YJC630174)+2 种基金the Natural Science Foundation of Hebei Province(G2019501074)the Fundamental Research Funds for the Central Universities(N2123019)the Postgraduate Funding Project of PLA(JY2020B085).
文摘This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities that combine a non-periodic inspection scheme with age-replacement are implemented.When the system is detected to be in the minor defective stage by an inspection for the first time,place an order and shorten the inspection interval.If the system has deteriorated to a severe defective stage,it is either repaired imperfectly or replaced by a new spare.However,an immediate replacement is required once the system fails,the maximal number of imperfect maintenance(IPM)is satisfied or its age reaches to a pre-specified threshold.In consideration of the spare’s availability as needed,there are three types of decisions,i.e.,an immediate or a delayed replacement by a regular ordered spare,an immediate replacement by an expedited ordered spare with a relative higher cost.Then,some mutually independent and exclusive renewal events at the end of a renewal cycle are discussed,and the optimization model of such a joint policy is further developed by minimizing the long-run expected cost rate to find the optimal inspection and age-replacement intervals,and the maximum number of IPM.A Monte-Carlo based integration method is also designed to solve the proposed model.Finally,a numerical example is given to illustrate the proposed joint optimization policy and the performance of the Monte-Carlo based integration method.
基金This work was supported by the National Natural Science Foundation of China(71471015)the Social Science Fund Base Project of Beijing(19JDGLA001).
文摘This paper proposes a joint inspection-based maintenance and spare ordering optimization policy that considers the problem of integrated inspection,preventive maintenance,spare ordering,and quality control for a four-state single-unit manufacturing system.When an inspection detects a minor defect,a second phase inspection is initiated and a regular order is placed.Product quality begins to deteriorate when the system undergoes a severe defect.To counter this,an advanced replacement of the minor defective system is carried out at the Jth second phase inspection.If a severe defect is recognized prior to the Jth inspection,or if system failure occurs,preventive or corrective replacement is executed.The timeliness of replacement depends on the availability of spare.We adopt two modes of ordering:a regular order and an emergency order.Meanwhile,a threshold level is introduced to determine whether an emergency order is preferred even when the regular order is already ordered but has not yet arrived.The optimal joint inspection-based maintenance and spare ordering policy is formulated by minimizing the expected cost per unit time.A simulation algorithm is proposed to obtain the optimal two-phase inspection interval,threshold level and advanced replacement interval.Results from several numerical examples demonstrate that,in terms of the expected cost per unit time,our proposed model is superior to some existing models.
基金National Science and Technology Support Program of China ( No. 2009BAG15B03)
文摘The effect of multiple span suspension structure on the mechanical response of bridge deck pavement was studied, and finite element analysis (FEM) of stress and strain of pavement according to the bridge floor system features of super-long and high flexibility was made. Meanwhile, the FEM results were compared with those of the single span suspension structure. Three-stage analytic hierarchy process (AHP) is developed to analyze the mechanical response including whole bridge analysis, partial beams section analysis and orthotropic plate analysis. The most unfavorable load position was determined by the numerical solutions acquired from each stage to study the main mechanical index of multiple span suspension structure. The FEM results showed that the mechanical response numerical solutions by using the three-stage AHP are greater than those by simplified boundary condition, and the force condition of multiple span suspension structure is worse than that of the single span suspension structure.