提出了一种基于三维卷积和卷积长短期记忆(convolutional long short-term memory,CLSTM)神经网络的水产养殖溶解氧预测模型。首先,将输入向量及其转置相乘形成一个单通道矩阵,把一定时间段内的单通道矩阵堆叠成一个立方体作为输入数据...提出了一种基于三维卷积和卷积长短期记忆(convolutional long short-term memory,CLSTM)神经网络的水产养殖溶解氧预测模型。首先,将输入向量及其转置相乘形成一个单通道矩阵,把一定时间段内的单通道矩阵堆叠成一个立方体作为输入数据;然后,将输入数据进行连续两次三维卷积来细化溶解氧相关因素的特征,并删除池化层以简化计算;最后,将三维卷积抽取的特征结果输入CLSTM模型以提取时间维度的信息,在全连接层根据梯度下降算法将数据反向更新。采集湖北省襄阳市某家特种水产养殖有限公司的实际数据进行实验。结果表明:相比于传统BP神经网络模型、Conv3D、Conv2D,所提出的模型具有更快的训练收敛速度、更高的预测精度和更好的预测稳定性,可以满足实际生产的需要。展开更多
文摘提出了一种基于三维卷积和卷积长短期记忆(convolutional long short-term memory,CLSTM)神经网络的水产养殖溶解氧预测模型。首先,将输入向量及其转置相乘形成一个单通道矩阵,把一定时间段内的单通道矩阵堆叠成一个立方体作为输入数据;然后,将输入数据进行连续两次三维卷积来细化溶解氧相关因素的特征,并删除池化层以简化计算;最后,将三维卷积抽取的特征结果输入CLSTM模型以提取时间维度的信息,在全连接层根据梯度下降算法将数据反向更新。采集湖北省襄阳市某家特种水产养殖有限公司的实际数据进行实验。结果表明:相比于传统BP神经网络模型、Conv3D、Conv2D,所提出的模型具有更快的训练收敛速度、更高的预测精度和更好的预测稳定性,可以满足实际生产的需要。