Machining performance of thin-walled components made by aeronautical difficult-toprocess materials is a significant issue in the aviation manufacturing industry.Although wire electric discharge machining-low speed(WED...Machining performance of thin-walled components made by aeronautical difficult-toprocess materials is a significant issue in the aviation manufacturing industry.Although wire electric discharge machining-low speed(WEDM-LS)is one of typical non-contact machining processes without macro cutting force,which does well in removing hardness and brittleness materials via pulsed discharge at high temperature,but few researchers have studied the thermal distortion behavior leading to a considerable geometric error in the WEDM-LS of thin-walled components.In this paper,a transverse magnetic field assisted method is applied for affecting the uniformity of discharge point distribution so as to reduce the distortion in WEDM-LS processing thin-wall component.First,the generation mechanism of this new distortion behavior and the impact mechanism of transverse magnetic field(TMF)on distortion are demonstrated by theoretical analysis.In order to further figure out the distortion behavior in the TMF-WEDM process,a new thermophysical model considering the discharge point distribution is established to simulate temperature field,residual stress field and distortion profiles.Then a large number of Taguchi experiments are carried out to investigate the influences of process parameters including pulse discharge energy(pulse on time,pulse off time,and current)and magnetic field strength on distortion in WEDM-LS.To comparatively analyze simulated and experimental results,the accuracy of established thermophysical model is verified within a relative error of 18.38%in distortion.Moreover,it can be revealed that transverse magnetic field contribute to significantly improve the longitudinal distribution uniformity with maximum increase of 12.32%at magnetic field strength:0.15 T,leading to significant reductions of 32.77%in distortion and 22.68%in recast layer.Eventually,we also presented the variation of residual stress and recast layer along thickness direction under different distortion behavior,which are in good agreement with that of dis展开更多
Based on the symmetry of the structure, a two-dimensional finite difference time domain (FDTD) method is used to analyze the sleeve monopole antenna on the infinite perfect conductor ground fed by a coaxial line. Th...Based on the symmetry of the structure, a two-dimensional finite difference time domain (FDTD) method is used to analyze the sleeve monopole antenna on the infinite perfect conductor ground fed by a coaxial line. The fields in time domain are then turned into frequency domain through the discrete Fourier Transform to compute the surface current distribution and the input impedance of the sleeve monopole antenna. The gain or pattern of the monopole antenna is also computed, employing the combination of the image theory and the near-to-far transformation in frequency domain. All the computed results agree very well with the results of other methods and measured ones, verifying the application of the FDTD method to analyze the sleeve monopole antennas. The voltage standing wave ratio (VSWR) of the sleeve monopole antennas with different heights and radii of the sleeve are checked to study the influence of the sleeve, which indicates that the height and the radius of the sleeve are both important to the impedance bandwidth of the sleeve monopole antennas.展开更多
提出了一种将时域积分方程(time domain integral equation,TDIE)方法和时域有限差分(finite differnce time domain,FDTD)方法相结合计算分层有耗半空间上方导线瞬态电磁响应的新方法.其中,一维FDTD方法用于计算入射电磁波经分层半空...提出了一种将时域积分方程(time domain integral equation,TDIE)方法和时域有限差分(finite differnce time domain,FDTD)方法相结合计算分层有耗半空间上方导线瞬态电磁响应的新方法.其中,一维FDTD方法用于计算入射电磁波经分层半空间反射的时域波形.TDIE用于求解细导线在加入两个激励源(直接入射电磁波和经分层半空间反射的电磁波)时的瞬态响应.相关计算理论和数值模拟结果说明了本文方法是一种解决了分层有耗介质上方水平放置导线瞬态响应的高效解决方案.展开更多
提出了采用三次样条函数作为时域基函数求解良导体细线时域积分方程(TD-EFIE)的MOT(Marching on in time)算法,由于三次样条函数是非因果的,算法中采用有限带宽信号的一步外推方法,估计将来值。三次样条函数作为时间基函数,具有插值精...提出了采用三次样条函数作为时域基函数求解良导体细线时域积分方程(TD-EFIE)的MOT(Marching on in time)算法,由于三次样条函数是非因果的,算法中采用有限带宽信号的一步外推方法,估计将来值。三次样条函数作为时间基函数,具有插值精度高、支撑区域小的特点,在保证计算精度的情况下降低了信号采样率和计算的复杂性,提高了MOT算法的后时稳定性。计算结果表明了算法的有效性。展开更多
基金supported by National Natural Science Foundation of China(NSFC)(Nos.51705171 and 51975228)Natural Science Foundation of Guangdong(No.2020A151501638)the Program of China Scholarship Council(No.201806160076)。
文摘Machining performance of thin-walled components made by aeronautical difficult-toprocess materials is a significant issue in the aviation manufacturing industry.Although wire electric discharge machining-low speed(WEDM-LS)is one of typical non-contact machining processes without macro cutting force,which does well in removing hardness and brittleness materials via pulsed discharge at high temperature,but few researchers have studied the thermal distortion behavior leading to a considerable geometric error in the WEDM-LS of thin-walled components.In this paper,a transverse magnetic field assisted method is applied for affecting the uniformity of discharge point distribution so as to reduce the distortion in WEDM-LS processing thin-wall component.First,the generation mechanism of this new distortion behavior and the impact mechanism of transverse magnetic field(TMF)on distortion are demonstrated by theoretical analysis.In order to further figure out the distortion behavior in the TMF-WEDM process,a new thermophysical model considering the discharge point distribution is established to simulate temperature field,residual stress field and distortion profiles.Then a large number of Taguchi experiments are carried out to investigate the influences of process parameters including pulse discharge energy(pulse on time,pulse off time,and current)and magnetic field strength on distortion in WEDM-LS.To comparatively analyze simulated and experimental results,the accuracy of established thermophysical model is verified within a relative error of 18.38%in distortion.Moreover,it can be revealed that transverse magnetic field contribute to significantly improve the longitudinal distribution uniformity with maximum increase of 12.32%at magnetic field strength:0.15 T,leading to significant reductions of 32.77%in distortion and 22.68%in recast layer.Eventually,we also presented the variation of residual stress and recast layer along thickness direction under different distortion behavior,which are in good agreement with that of dis
基金Supported by the National High Technology and Development Program of China(2001AA631050)
文摘Based on the symmetry of the structure, a two-dimensional finite difference time domain (FDTD) method is used to analyze the sleeve monopole antenna on the infinite perfect conductor ground fed by a coaxial line. The fields in time domain are then turned into frequency domain through the discrete Fourier Transform to compute the surface current distribution and the input impedance of the sleeve monopole antenna. The gain or pattern of the monopole antenna is also computed, employing the combination of the image theory and the near-to-far transformation in frequency domain. All the computed results agree very well with the results of other methods and measured ones, verifying the application of the FDTD method to analyze the sleeve monopole antennas. The voltage standing wave ratio (VSWR) of the sleeve monopole antennas with different heights and radii of the sleeve are checked to study the influence of the sleeve, which indicates that the height and the radius of the sleeve are both important to the impedance bandwidth of the sleeve monopole antennas.
文摘提出了一种将时域积分方程(time domain integral equation,TDIE)方法和时域有限差分(finite differnce time domain,FDTD)方法相结合计算分层有耗半空间上方导线瞬态电磁响应的新方法.其中,一维FDTD方法用于计算入射电磁波经分层半空间反射的时域波形.TDIE用于求解细导线在加入两个激励源(直接入射电磁波和经分层半空间反射的电磁波)时的瞬态响应.相关计算理论和数值模拟结果说明了本文方法是一种解决了分层有耗介质上方水平放置导线瞬态响应的高效解决方案.
文摘提出了采用三次样条函数作为时域基函数求解良导体细线时域积分方程(TD-EFIE)的MOT(Marching on in time)算法,由于三次样条函数是非因果的,算法中采用有限带宽信号的一步外推方法,估计将来值。三次样条函数作为时间基函数,具有插值精度高、支撑区域小的特点,在保证计算精度的情况下降低了信号采样率和计算的复杂性,提高了MOT算法的后时稳定性。计算结果表明了算法的有效性。