Using 3-D elastic-plastic FEM, the cold strip rolling process in a 4-high mill was simulated. The elastic deformation of rolls, the plastic deformation of the strip, and the pressure between the work roll and the back...Using 3-D elastic-plastic FEM, the cold strip rolling process in a 4-high mill was simulated. The elastic deformation of rolls, the plastic deformation of the strip, and the pressure between the work roll and the backup roll were taken into account. The distribution of rolling pressure along the strip width was obtained. Based on the simulation results, the peak value of rolling pressure and the location of the peak were analyzed under different rolling conditions. The effects of the roll bending force and the strip width on the distribution of rolling pressure along the width direction were determined.展开更多
The theory of metal plastic deformation is an important part of the strip shape control theories. In order to control the shape and gauge accurately during cold thin strip rolling, the mechanism of the metal lateral f...The theory of metal plastic deformation is an important part of the strip shape control theories. In order to control the shape and gauge accurately during cold thin strip rolling, the mechanism of the metal lateral flow must be revealed clearly. Therefore, the lateral displacement of thin strip was studied by the grid method. Those grids with a line thickness of 10 μm and clear boundaries were successfully manufactured on the strip surface using lithography. Then, the effects of reduction, front and back tension, and taper angle of the first intermediate roll on the metal lateral flow were studied. The strip shape was calculated with and without considering the lateral displacement; furthermore, the calculations were compared with the measured results. The results show that the calculations with considering the lateral displacement are closer to the measured results. In addition, the comparison of finite element analysis results with the experimental results indicates that the test method was reliable.展开更多
基金Item Sponsored by Hi-Tech Research and Development Program of China (2003AA33G010) National Basic Research Program of China (G2000067208-4)
文摘Using 3-D elastic-plastic FEM, the cold strip rolling process in a 4-high mill was simulated. The elastic deformation of rolls, the plastic deformation of the strip, and the pressure between the work roll and the backup roll were taken into account. The distribution of rolling pressure along the strip width was obtained. Based on the simulation results, the peak value of rolling pressure and the location of the peak were analyzed under different rolling conditions. The effects of the roll bending force and the strip width on the distribution of rolling pressure along the width direction were determined.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China (51474190), Natural Science Foundation of HeBei Province (E2015203311), and Taiyuan City Science and Technology Major Projects (170203).
文摘The theory of metal plastic deformation is an important part of the strip shape control theories. In order to control the shape and gauge accurately during cold thin strip rolling, the mechanism of the metal lateral flow must be revealed clearly. Therefore, the lateral displacement of thin strip was studied by the grid method. Those grids with a line thickness of 10 μm and clear boundaries were successfully manufactured on the strip surface using lithography. Then, the effects of reduction, front and back tension, and taper angle of the first intermediate roll on the metal lateral flow were studied. The strip shape was calculated with and without considering the lateral displacement; furthermore, the calculations were compared with the measured results. The results show that the calculations with considering the lateral displacement are closer to the measured results. In addition, the comparison of finite element analysis results with the experimental results indicates that the test method was reliable.