为了提高双直线电动机驱动的同步直接进给轴的运动精度,对该类直接进给轴的全行程热误差在线补偿方法进行了研究。分析了双直接进给轴全行程热误差的影响因素,提出一种基于核偏最小二乘法(Kernel partial least squares,KPLS)和模糊逻...为了提高双直线电动机驱动的同步直接进给轴的运动精度,对该类直接进给轴的全行程热误差在线补偿方法进行了研究。分析了双直接进给轴全行程热误差的影响因素,提出一种基于核偏最小二乘法(Kernel partial least squares,KPLS)和模糊逻辑相结合的双直接进给轴全行程热误差的在线补偿方法。应用激光干涉仪测量其热变形量,使用热电偶和红外测温仪测量进给机构关键点的温度,以时间匹配温度和变形量数据建立统计样本,在均匀离散点位置建立热误差KPLS识别模型,通过在线计算得到离散点热误差补偿量,再根据任意位置与离散点的模糊关联程度,综合计算全行程任意位置处热误差补偿量。以此理论为基础,建立补偿决策函数和补偿系统,依据补偿决策函数智能推断补偿值,通过向数控系统发送补偿码实现在线补偿。在自构建的龙门双直线电动机驱动的直接进给轴平台上,进行全行程热误差在线补偿试验研究,结果表明:混合KPLS与模糊逻辑可以有效的对双直接进给轴全行程热误差在线补偿,经过随机测试验证,补偿后的进给精度提高了50%。展开更多
Effective thermal control systems are essential for the reliable working of insulated gate bipolar transistors (IGBTs) in many applications. A novel spray cooling loop system with integrated sintered porous copper w...Effective thermal control systems are essential for the reliable working of insulated gate bipolar transistors (IGBTs) in many applications. A novel spray cooling loop system with integrated sintered porous copper wick (SCLS-SPC) is proposed to meet the requirements of higher device level heat fluxes and the harsh environments in some applications such as hybrid, fuel cell vehicles and aerospace. Fuzzy logic and proportional-integral-derivative (PID) policies are applied to adjust the electronic temperature within a safe working range. To evaluate the thermal control effect, a mathematical model of a 4-node thermal network and pump are established for predicting the dynamics of the SCLS-SPC. Moreover, the transient response of the 4 nodes and vapor mass flowrate under no control, PID and Fuzzy-PID are numerically investigated and discussed in detail.展开更多
Efficient thermal management of lithium-ion battery,working under extremely rapid charging-discharging,is of widespread interest to avoid the battery degradation due to temperature rise,resulting in the enhanced lifes...Efficient thermal management of lithium-ion battery,working under extremely rapid charging-discharging,is of widespread interest to avoid the battery degradation due to temperature rise,resulting in the enhanced lifespan.Herein,thermal management of lithium-ion battery has been performed via a liquid cooling theoretical model integrated with thermoelectric model of battery packs and single-phase heat transfer.Aiming to alleviate the battery temperature fluctuation by automatically manipulating the flow rate of working fluid,a nominal model-free controller,i.e.,fuzzy logic controller is designed.An optimized on-off controller based on pump speed optimization is introduced to serve as the comparative controller.Thermal control simulations are conducted under regular operating and extreme operating conditions,and two controllers are applied to control battery temperature with proper intervals which is conducive to enhance the battery charge-discharge efficiency.The results indicate that,for any operating condition,the fuzzy logic controller shows excellence in terms of the tracking accuracy of set-point of battery temperature.Thanks to the establishment of fuzzy set and fuzzy behavioral rules,the battery temperature has been throughout maintained near the set point,and the temperature fluctuation amplitude is highly reduced,with better temperature control accuracy of~0.2℃(regular condition)and~0.5℃(extreme condition)compared with~1.1℃(regular condition)and~1.6℃(extreme condition)of optimized on-off controller.While in the case of extreme operating condition,the proposed optimized on-off controller manifests the hysteresis in temperature fluctuation,which is ascribed to the set of dead-band for the feedback temperature.The simulation results cast new light on the utilization and development of model-free temperature controller for the thermal management of lithium-ion battery.展开更多
We demonstrate a synaptic transistor that uses a thermally crosslinked three-dimensional network to accommodate ionic liquid to form an ion gel layer. The synaptic transistor successfully emulated important synaptic p...We demonstrate a synaptic transistor that uses a thermally crosslinked three-dimensional network to accommodate ionic liquid to form an ion gel layer. The synaptic transistor successfully emulated important synaptic plasticity, such as paired-pulse facilitation, spike-number dependent plasticity, spike-voltage dependent plasticity, and spike-rate dependent plasticity;these responses imply successful use of the ion gel. Moreover, the device realized “OR” and “AND” logic operations, and high-pass filtering behavior. Energy consumption of the device can be reduced to sub-femtojoule level, which is below that of biological synapses. Compared with traditional physical cross-linking using block copolymers, this method provides a facile strategy to prepare ion gels with tunable properties by altering the polymers and crosslinkers,and to enormously reduce the price by replacing expensive block copolymers or eliminating additional synthesis processes. This report provides a versatile strategy for design of synaptic transistors and their applications in neuromorphic electronics.展开更多
Logic gates are fundamental structural components in all modern digital electronic devices. Here, nonequilibrium Green's functions are incorporated with the density functional theory to verify the thermal spin tra...Logic gates are fundamental structural components in all modern digital electronic devices. Here, nonequilibrium Green's functions are incorporated with the density functional theory to verify the thermal spin transport features of the single-molecule spintronic devices constructed by a single molecule in series or parallel connected with graphene nanoribbons electrodes. Our calculations demonstrate that the electric field can manipulate the spin-polarized current. Then, a complete set of thermal spin molecular logic gates are proposed, including AND, OR, and NOT gates. The mentioned logic gates enable different designs of complex thermal spin molecular logic functions and facilitate the electric field control of thermal spin molecular devices.展开更多
Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However,...Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion-integration-differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.展开更多
针对某500kV变电站2号主变复役操作过程中,当拉开2号主变220 k V侧接地闸刀后,出现直流接地报警,合上该接地闸刀,直流接地告警消失的异常情况,经过分析查找,发现与该主变220 k V侧接地闸刀有联闭锁关系的2号主变2号电容器3221闸刀机构...针对某500kV变电站2号主变复役操作过程中,当拉开2号主变220 k V侧接地闸刀后,出现直流接地报警,合上该接地闸刀,直流接地告警消失的异常情况,经过分析查找,发现与该主变220 k V侧接地闸刀有联闭锁关系的2号主变2号电容器3221闸刀机构箱内的热继电器F1两副接点间内绝缘异常,导致直流串入闸刀交流控制回路。阐述了具体的故障处理过程,并给出了变电站在设计、施工、运维过程中防止直流接地的注意事项。展开更多
Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consist...Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consisting of a planar four-coordinate Fe molecule and a 15,16-dinitrile dihydropyrene/cyclophanediene molecule,with single-walled carbon nanotube bridge and electrode.Our results show that the magnetic field and light can effectively regulate the thermallydriven spin-dependent currents.Perfect thermal spin-filtering effect and good thermal switching effect are realized.The results are explained by the Fermi-Dirac distribution function,the spin-resolved transmission spectra,the spatial distribution of molecular projected self-consistent Hamiltonian orbitals,and the spin-resolved current spectra.On the basis of these thermally-driven spin-dependent transport properties,we have further designed three basic thermal spin molecular AND,OR,and NOT gates.展开更多
This paper presents a new thermal computer, which is driven by heat current and not electricity current. The basic thermal logic gate, such as thermal logic AND gate. thermal logic NOT gate, thermal logic OR gate are ...This paper presents a new thermal computer, which is driven by heat current and not electricity current. The basic thermal logic gate, such as thermal logic AND gate. thermal logic NOT gate, thermal logic OR gate are discussed in this paper. Compared with electronic computer, it can work at some special environment, such as high temperature and high pressure Consequently, the heat computer is not only a new special computer, but also a lot of new heat computation cell or device could be invented in the future. The thermal computer and control device are a new thermal energy machines powered by heat energy, it is significant for the environmental protection, energy usage and developed and new discipline development.展开更多
文摘为了提高双直线电动机驱动的同步直接进给轴的运动精度,对该类直接进给轴的全行程热误差在线补偿方法进行了研究。分析了双直接进给轴全行程热误差的影响因素,提出一种基于核偏最小二乘法(Kernel partial least squares,KPLS)和模糊逻辑相结合的双直接进给轴全行程热误差的在线补偿方法。应用激光干涉仪测量其热变形量,使用热电偶和红外测温仪测量进给机构关键点的温度,以时间匹配温度和变形量数据建立统计样本,在均匀离散点位置建立热误差KPLS识别模型,通过在线计算得到离散点热误差补偿量,再根据任意位置与离散点的模糊关联程度,综合计算全行程任意位置处热误差补偿量。以此理论为基础,建立补偿决策函数和补偿系统,依据补偿决策函数智能推断补偿值,通过向数控系统发送补偿码实现在线补偿。在自构建的龙门双直线电动机驱动的直接进给轴平台上,进行全行程热误差在线补偿试验研究,结果表明:混合KPLS与模糊逻辑可以有效的对双直接进给轴全行程热误差在线补偿,经过随机测试验证,补偿后的进给精度提高了50%。
文摘Effective thermal control systems are essential for the reliable working of insulated gate bipolar transistors (IGBTs) in many applications. A novel spray cooling loop system with integrated sintered porous copper wick (SCLS-SPC) is proposed to meet the requirements of higher device level heat fluxes and the harsh environments in some applications such as hybrid, fuel cell vehicles and aerospace. Fuzzy logic and proportional-integral-derivative (PID) policies are applied to adjust the electronic temperature within a safe working range. To evaluate the thermal control effect, a mathematical model of a 4-node thermal network and pump are established for predicting the dynamics of the SCLS-SPC. Moreover, the transient response of the 4 nodes and vapor mass flowrate under no control, PID and Fuzzy-PID are numerically investigated and discussed in detail.
基金supported by the National Key R&D Program of China(2021YFB3803200)the National Natural Science Foundation of China(Grant No.U2241253)。
文摘Efficient thermal management of lithium-ion battery,working under extremely rapid charging-discharging,is of widespread interest to avoid the battery degradation due to temperature rise,resulting in the enhanced lifespan.Herein,thermal management of lithium-ion battery has been performed via a liquid cooling theoretical model integrated with thermoelectric model of battery packs and single-phase heat transfer.Aiming to alleviate the battery temperature fluctuation by automatically manipulating the flow rate of working fluid,a nominal model-free controller,i.e.,fuzzy logic controller is designed.An optimized on-off controller based on pump speed optimization is introduced to serve as the comparative controller.Thermal control simulations are conducted under regular operating and extreme operating conditions,and two controllers are applied to control battery temperature with proper intervals which is conducive to enhance the battery charge-discharge efficiency.The results indicate that,for any operating condition,the fuzzy logic controller shows excellence in terms of the tracking accuracy of set-point of battery temperature.Thanks to the establishment of fuzzy set and fuzzy behavioral rules,the battery temperature has been throughout maintained near the set point,and the temperature fluctuation amplitude is highly reduced,with better temperature control accuracy of~0.2℃(regular condition)and~0.5℃(extreme condition)compared with~1.1℃(regular condition)and~1.6℃(extreme condition)of optimized on-off controller.While in the case of extreme operating condition,the proposed optimized on-off controller manifests the hysteresis in temperature fluctuation,which is ascribed to the set of dead-band for the feedback temperature.The simulation results cast new light on the utilization and development of model-free temperature controller for the thermal management of lithium-ion battery.
基金financial support from the National Natural Science Foundation of China(No.21601076)the Natural Science Foundation of Liaoning Province(No.2019-ZD0266)。
文摘We demonstrate a synaptic transistor that uses a thermally crosslinked three-dimensional network to accommodate ionic liquid to form an ion gel layer. The synaptic transistor successfully emulated important synaptic plasticity, such as paired-pulse facilitation, spike-number dependent plasticity, spike-voltage dependent plasticity, and spike-rate dependent plasticity;these responses imply successful use of the ion gel. Moreover, the device realized “OR” and “AND” logic operations, and high-pass filtering behavior. Energy consumption of the device can be reduced to sub-femtojoule level, which is below that of biological synapses. Compared with traditional physical cross-linking using block copolymers, this method provides a facile strategy to prepare ion gels with tunable properties by altering the polymers and crosslinkers,and to enormously reduce the price by replacing expensive block copolymers or eliminating additional synthesis processes. This report provides a versatile strategy for design of synaptic transistors and their applications in neuromorphic electronics.
基金the Natioanl Natural Science Foundation of China (Grant No. 11864011)in part by Youth Project of Scientific and technological Research Program of Chongqing Education Commission (Grant No. KJQN202101204)。
文摘Logic gates are fundamental structural components in all modern digital electronic devices. Here, nonequilibrium Green's functions are incorporated with the density functional theory to verify the thermal spin transport features of the single-molecule spintronic devices constructed by a single molecule in series or parallel connected with graphene nanoribbons electrodes. Our calculations demonstrate that the electric field can manipulate the spin-polarized current. Then, a complete set of thermal spin molecular logic gates are proposed, including AND, OR, and NOT gates. The mentioned logic gates enable different designs of complex thermal spin molecular logic functions and facilitate the electric field control of thermal spin molecular devices.
文摘Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion-integration-differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
文摘针对某500kV变电站2号主变复役操作过程中,当拉开2号主变220 k V侧接地闸刀后,出现直流接地报警,合上该接地闸刀,直流接地告警消失的异常情况,经过分析查找,发现与该主变220 k V侧接地闸刀有联闭锁关系的2号主变2号电容器3221闸刀机构箱内的热继电器F1两副接点间内绝缘异常,导致直流串入闸刀交流控制回路。阐述了具体的故障处理过程,并给出了变电站在设计、施工、运维过程中防止直流接地的注意事项。
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MA059)the Major Scientific and Technological Innovation Project(MSTIP)of Shandong Province,China(Grant No.2019JZZY010209)。
文摘Based on the density functional theory combined with the nonequilibrium Green function methodology,we have studied the thermally-driven spin-dependent transport properties of a combinational molecular junction consisting of a planar four-coordinate Fe molecule and a 15,16-dinitrile dihydropyrene/cyclophanediene molecule,with single-walled carbon nanotube bridge and electrode.Our results show that the magnetic field and light can effectively regulate the thermallydriven spin-dependent currents.Perfect thermal spin-filtering effect and good thermal switching effect are realized.The results are explained by the Fermi-Dirac distribution function,the spin-resolved transmission spectra,the spatial distribution of molecular projected self-consistent Hamiltonian orbitals,and the spin-resolved current spectra.On the basis of these thermally-driven spin-dependent transport properties,we have further designed three basic thermal spin molecular AND,OR,and NOT gates.
基金Acknowledgment: The paper was supported by the Nature Science Foundation of China (No. 50876034), Ph.D. Science Foundation of Ministry. of Education of China (No. 20040487039): Key Discipline Construction Foundation of Shanghai Education Commission (No. J5180|): Science Foundation of Shanghai Education Commission (No. 08ZY79) SSPU Science Foundation (No. DZ207004).
文摘This paper presents a new thermal computer, which is driven by heat current and not electricity current. The basic thermal logic gate, such as thermal logic AND gate. thermal logic NOT gate, thermal logic OR gate are discussed in this paper. Compared with electronic computer, it can work at some special environment, such as high temperature and high pressure Consequently, the heat computer is not only a new special computer, but also a lot of new heat computation cell or device could be invented in the future. The thermal computer and control device are a new thermal energy machines powered by heat energy, it is significant for the environmental protection, energy usage and developed and new discipline development.