Cooling of coal mines in the Bowen Basin, characterized by steep geothermal gradient, is presently achieved mostly through rental surface bulk air cooling in summer months. This paper argues that future mines will be ...Cooling of coal mines in the Bowen Basin, characterized by steep geothermal gradient, is presently achieved mostly through rental surface bulk air cooling in summer months. This paper argues that future mines will be required to focus their cooling resources more intensively to manage a challenging thermal environment where virgin coal temperatures over 50 °C at a depth of 500 m are expected. Currently, mine cooling systems are employed to maintain the wet bulb temperatures(WBT) to below 27 °C at which point the risks of heat stroke or other heat related issues are manageable. The capacities of these systems are in the range of 6–10 MW refrigeration power. The relationship between high working temperature environment and injury frequency rates is well established. Therefore, provision of appropriate cooling strategies and understanding their optimum performance and suitability are important to Australian coal mines of the future. This paper evaluates the underground temperature profiles of deep, gassy coal mines with propensity for spontaneous combustion and proposes the long term cooling pathways to effectively manage the thermal hazards. Thermodynamic modeling is performed on a longwall face and includes air leakage effects from goaf streams at various locations along the longwall face. The strategy summarizes the application of underground bulk air cooling, chilled water sprays on the shearer and the resulting temperature profiles. Considering the new mining projects planned for the Bowen Basin region, a review of implementable cooling strategies such as mid-gate mobile bulk air coolers(BACs), spot coolers, underground bulk air cooling and the use of chilled water to enhance the positional efficiency of cooling plants,are discussed in this paper. Finally, the comparison of ‘rental' versus ‘ownership' of cooling plants is analysed as part of long-term cooling strategies.展开更多
为了评估双(叔丁过氧基)二异丙苯(BIPB)的热危害,对其热分解过程进行多速率的动态扫描C80热分析,用几种简单的热危害评估方法分析其热危害。然后应用模式法、无模式法(Friedman微分等转化率法)分别对试验结果进行处理,得到分解动力学数...为了评估双(叔丁过氧基)二异丙苯(BIPB)的热危害,对其热分解过程进行多速率的动态扫描C80热分析,用几种简单的热危害评估方法分析其热危害。然后应用模式法、无模式法(Friedman微分等转化率法)分别对试验结果进行处理,得到分解动力学数据,并用ASTM E 698法得到活化能数据,同时用C80、ARC和DSC的试验数据验证分解动力学数据的可靠性。最后利用无模式法的分解动力学数据进行BIPB绝热条件下和非绝热的2m3球形容器中的失控反应模拟,得到类似工艺条件下BIPB的安全控制温度。展开更多
In permafrost areas, the timing of thermal surface settlement hazard onset is of great importance for the construction and maintenance of engineering facilities.Future permafrost thaw and the associated thermal settle...In permafrost areas, the timing of thermal surface settlement hazard onset is of great importance for the construction and maintenance of engineering facilities.Future permafrost thaw and the associated thermal settlement hazard onset timing in the Qinghai-Tibet engineering corridor(QTEC) were analyzed using high-resolution soil temperature data from the Community Land Model version4 in combination with multiple model and scenario soil temperature data from the fifth phase of the Coupled Model Intercomparison Project(CMIP5). Compared to the standard frozen ground map for the Tibetan Plateau and ERAInterim data, a multimodel ensemble reproduces the extent of permafrost and soil temperature change in the QTEC at a 1 m depth from 1986–2005. Soil temperature and active layer thickness increase markedly during 2006–2099 using CMIP5 scenarios. By 2099, the ensemble mean soil temperature at 15 m depth will increase between 1.0 and 3.6 ℃ in the QTEC. Using crushed-rock revetments can delay the onset of thermal settlement hazard for colder permafrost areas by approximately 17 years in the worst case scenario of RCP8.5. Nearly one-third of the area of the QTEC exhibits settlement hazard as early as 2050, and half of this one-third of the area is traversed by the QinghaiTibet highway/railway, a situation that requires more planning and remedial attention. Simulated onsets of thermal settlement hazard correspond well to the observed soil temperature at 15 m depth for seven grid areas in the QETC, which to some extent indicates that these timingestimates are reasonable. This study suggests that climate model-based timing estimation of thermal settlement hazard onset is a valuable method, and that the results are worthy of consideration in engineering design and evaluation.展开更多
基金support received from Anglo American Metallurgical CoalAnglo American Operations (Pty) Ltd in preparing this paper
文摘Cooling of coal mines in the Bowen Basin, characterized by steep geothermal gradient, is presently achieved mostly through rental surface bulk air cooling in summer months. This paper argues that future mines will be required to focus their cooling resources more intensively to manage a challenging thermal environment where virgin coal temperatures over 50 °C at a depth of 500 m are expected. Currently, mine cooling systems are employed to maintain the wet bulb temperatures(WBT) to below 27 °C at which point the risks of heat stroke or other heat related issues are manageable. The capacities of these systems are in the range of 6–10 MW refrigeration power. The relationship between high working temperature environment and injury frequency rates is well established. Therefore, provision of appropriate cooling strategies and understanding their optimum performance and suitability are important to Australian coal mines of the future. This paper evaluates the underground temperature profiles of deep, gassy coal mines with propensity for spontaneous combustion and proposes the long term cooling pathways to effectively manage the thermal hazards. Thermodynamic modeling is performed on a longwall face and includes air leakage effects from goaf streams at various locations along the longwall face. The strategy summarizes the application of underground bulk air cooling, chilled water sprays on the shearer and the resulting temperature profiles. Considering the new mining projects planned for the Bowen Basin region, a review of implementable cooling strategies such as mid-gate mobile bulk air coolers(BACs), spot coolers, underground bulk air cooling and the use of chilled water to enhance the positional efficiency of cooling plants,are discussed in this paper. Finally, the comparison of ‘rental' versus ‘ownership' of cooling plants is analysed as part of long-term cooling strategies.
文摘为了评估双(叔丁过氧基)二异丙苯(BIPB)的热危害,对其热分解过程进行多速率的动态扫描C80热分析,用几种简单的热危害评估方法分析其热危害。然后应用模式法、无模式法(Friedman微分等转化率法)分别对试验结果进行处理,得到分解动力学数据,并用ASTM E 698法得到活化能数据,同时用C80、ARC和DSC的试验数据验证分解动力学数据的可靠性。最后利用无模式法的分解动力学数据进行BIPB绝热条件下和非绝热的2m3球形容器中的失控反应模拟,得到类似工艺条件下BIPB的安全控制温度。
基金supported by the National Basic Research Program of China (2012CB955401)the National Natural Science Foundation of China under Grants (41130103, 41421004, and 41405087)
文摘In permafrost areas, the timing of thermal surface settlement hazard onset is of great importance for the construction and maintenance of engineering facilities.Future permafrost thaw and the associated thermal settlement hazard onset timing in the Qinghai-Tibet engineering corridor(QTEC) were analyzed using high-resolution soil temperature data from the Community Land Model version4 in combination with multiple model and scenario soil temperature data from the fifth phase of the Coupled Model Intercomparison Project(CMIP5). Compared to the standard frozen ground map for the Tibetan Plateau and ERAInterim data, a multimodel ensemble reproduces the extent of permafrost and soil temperature change in the QTEC at a 1 m depth from 1986–2005. Soil temperature and active layer thickness increase markedly during 2006–2099 using CMIP5 scenarios. By 2099, the ensemble mean soil temperature at 15 m depth will increase between 1.0 and 3.6 ℃ in the QTEC. Using crushed-rock revetments can delay the onset of thermal settlement hazard for colder permafrost areas by approximately 17 years in the worst case scenario of RCP8.5. Nearly one-third of the area of the QTEC exhibits settlement hazard as early as 2050, and half of this one-third of the area is traversed by the QinghaiTibet highway/railway, a situation that requires more planning and remedial attention. Simulated onsets of thermal settlement hazard correspond well to the observed soil temperature at 15 m depth for seven grid areas in the QETC, which to some extent indicates that these timingestimates are reasonable. This study suggests that climate model-based timing estimation of thermal settlement hazard onset is a valuable method, and that the results are worthy of consideration in engineering design and evaluation.