In this paper,we consider an abstract third-order differential equation and deduce some results on the maximal regularity of its strict solution.We assume that the inhomogeneity appearing in the right-hand term of thi...In this paper,we consider an abstract third-order differential equation and deduce some results on the maximal regularity of its strict solution.We assume that the inhomogeneity appearing in the right-hand term of this equation belongs to some anistropic Holder spaces.We illustrate our results by a BVP involving a 3D Laplacian posed in a cusp domain of R^(4).展开更多
In this paper,a discrete-time analysis of the third-order charge-pump based phase-locked loops (CPLLs) is presented in the presence of loop delay.The z-domain analysis of the closed-loop transfer function is derived a...In this paper,a discrete-time analysis of the third-order charge-pump based phase-locked loops (CPLLs) is presented in the presence of loop delay.The z-domain analysis of the closed-loop transfer function is derived and compared with the traditional s-domain method.The simulation results under SPECTRE show that,due to the sampling nature of CPLL,the traditional s-domain analysis is unable to predict its jitter peaking accurately,especially when the loop delay is taken into consideration.The impact of loop delay on the stability of the third-order CPLL system is further analyzed based on the proposed way.The stability limit of the wide bandwidth CPLL with loop delay is calculated.The circuit simulation results agree well with mathematical analysis.展开更多
A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between th...A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between the process,voltage,and temperature variation of parameters and the loop stability is quantitatively analyzed. A variation margin is proposed for stability compensation. Furthermore,a simple adjustable current cell in the charge pump is proposed for additional stability compensation and a novel VCO with linear gain is adopted to limit the total variation. A fully integrated frequency synthesizer from 1 to 1.05GHz with 250kHz channel resolution is implemented to verify the methods.展开更多
文摘In this paper,we consider an abstract third-order differential equation and deduce some results on the maximal regularity of its strict solution.We assume that the inhomogeneity appearing in the right-hand term of this equation belongs to some anistropic Holder spaces.We illustrate our results by a BVP involving a 3D Laplacian posed in a cusp domain of R^(4).
基金Supported by National Natural Science Foundation of China(No.61204028)
文摘In this paper,a discrete-time analysis of the third-order charge-pump based phase-locked loops (CPLLs) is presented in the presence of loop delay.The z-domain analysis of the closed-loop transfer function is derived and compared with the traditional s-domain method.The simulation results under SPECTRE show that,due to the sampling nature of CPLL,the traditional s-domain analysis is unable to predict its jitter peaking accurately,especially when the loop delay is taken into consideration.The impact of loop delay on the stability of the third-order CPLL system is further analyzed based on the proposed way.The stability limit of the wide bandwidth CPLL with loop delay is calculated.The circuit simulation results agree well with mathematical analysis.
文摘A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between the process,voltage,and temperature variation of parameters and the loop stability is quantitatively analyzed. A variation margin is proposed for stability compensation. Furthermore,a simple adjustable current cell in the charge pump is proposed for additional stability compensation and a novel VCO with linear gain is adopted to limit the total variation. A fully integrated frequency synthesizer from 1 to 1.05GHz with 250kHz channel resolution is implemented to verify the methods.