Based on the stoichiometric method and the free energy minimization method,an ideal model for the reduction of iron oxides by carbon and hydrogen under blast furnace conditions was established,and the reduction effici...Based on the stoichiometric method and the free energy minimization method,an ideal model for the reduction of iron oxides by carbon and hydrogen under blast furnace conditions was established,and the reduction efficiency and theoretical energy consumption of the all-carbon blast furnace and the hydrogen-rich blast furnace were compared.The results show that after the reduction reaction is completed at the bottom of the blast furnace,the gas produced by reduction at 1600℃still has a certain excessive reduction capacity,which is due to the hydrogen brought in by the hydrogen-rich blast as well as the excess carbon monoxide generated by the reaction of the coke and the oxygen brought in by the blast.During the process of the gas with excessive reduction capacity rising from the bottom of the blast furnace and gas reduction process,the excessive reduction capacity of the gas gradually decreases with the increase in the dydrogen content in the blast.In the all-carbon blast furnace,the excess gas reduction capacity is the strongest,and the total energy consumption per ton of iron reduction is the lowest.This shows that,for the current operation mode of the blast furnace,adding hydrogen in the blast furnace cannot reduce the consumption of carbon required for reduction per ton of iron,but rather increases the consumption of carbon.展开更多
Developing anode catalysts of substantially enhanced activity for hydrogen oxidation reaction(HOR)and anti-CO poisoning performance is of great importance for the application of proton exchange membrane fuel cells(PEM...Developing anode catalysts of substantially enhanced activity for hydrogen oxidation reaction(HOR)and anti-CO poisoning performance is of great importance for the application of proton exchange membrane fuel cells(PEMFCs).Herein,we report Pd cluster in situ decorated urchin-like W_(18)O_(49)(WO_(2.72))electrocatalysts by a photo-reduction method for high performance HOR.The synthesized Pd-WO_(2.72)-L composite of low loading amount of 0.44 wt.%Pd by Xenon light reduction exhibits markedly high HOR catalytic activity and stability in 0.5 M H_(2)SO_(4),and the specific HOR current density and mass activity of Pd-WO_(2.72)-L are~1.5 and~80 times those of 20 wt.%Pt/C catalyst,respectively.Moreover,excellent anti-CO poisoning ability has also been obtained.The excellent HOR activity and anti-CO poisoning performance of Pd-WO_(2.72)-L have been discussed mainly in terms of the dual synergetic catalytic effects between Pd and WO_(2.72):Pd activation to Pd^(δ+)by the electron transfer from Pd to W promotes the hydrogen adsorption and activation to H*species,which results in largely elevated HOR activity;Pd degradation due to the CO poisoning is effectively prevented by WO_(2.72),which is responsible for the excellent CO-tolerance performance.展开更多
In this paper,we report our attempts to raise the efficiency of liquid reduction method when using high specific surface area TiO2(HSTiO2)by doping Au.Characterization of Au-HSTiO2 was conducted via XRD,UV-vis,SEM,and...In this paper,we report our attempts to raise the efficiency of liquid reduction method when using high specific surface area TiO2(HSTiO2)by doping Au.Characterization of Au-HSTiO2 was conducted via XRD,UV-vis,SEM,and photocurrent intensity.The experimental results show that Au-HSTiO2 exhibits prominently higher photocatalytic hydrogen production than TiO2 and HSTiO2.Enhanced photosynthetic hydrogen production ability of Au-HSTiO2 should be attributed to the presence of abundant surface active sites of HSTiO2,remarkably extending electronic holes in Au doping.This study provides a promising photosynthetic material for hydrogen production.展开更多
以氢气为还原剂,合成了高分散性的Pt_(-square)/石墨烯纳米复合物(Pt_(-square)/GNs).采用透射电子显微镜(TEM)、X-射线衍射(XRD)、X-射线电子能谱(XPS)及拉曼光谱(Ramam)等对Pt_(-square)/GNs样品进行了分析表征.分析结果表明氧化石墨...以氢气为还原剂,合成了高分散性的Pt_(-square)/石墨烯纳米复合物(Pt_(-square)/GNs).采用透射电子显微镜(TEM)、X-射线衍射(XRD)、X-射线电子能谱(XPS)及拉曼光谱(Ramam)等对Pt_(-square)/GNs样品进行了分析表征.分析结果表明氧化石墨、氯氩铂酸根离子被氢气彻底还原,特别是Pt前驱物的还原对氧化石墨的还原起原位同步催化作用,所获得的Pt纳米粒子呈现独特的方块状,平均直径为5 nm,均匀分布在石墨烯表面上.采用循环伏安法、计时电流法、CO溶出伏安法等电化学方法研究所合成复合物对甲醇氧化的电催化性能,结果表明相对于Pt/Vulcan XC-72R催化剂和商品化Pt/C催化剂,在碱性介质中Pt_(-square)/GNs对甲醇氧化表现出更高的电化学活性(680 m A·mg^(-1))、更好的催化剂稳定性及更强的抗CO毒化能力.展开更多
基金The author are thankful for the support from the National Natural Science Foundation of China(Nos.U1560203,51704021,and 51274031)Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials.
文摘Based on the stoichiometric method and the free energy minimization method,an ideal model for the reduction of iron oxides by carbon and hydrogen under blast furnace conditions was established,and the reduction efficiency and theoretical energy consumption of the all-carbon blast furnace and the hydrogen-rich blast furnace were compared.The results show that after the reduction reaction is completed at the bottom of the blast furnace,the gas produced by reduction at 1600℃still has a certain excessive reduction capacity,which is due to the hydrogen brought in by the hydrogen-rich blast as well as the excess carbon monoxide generated by the reaction of the coke and the oxygen brought in by the blast.During the process of the gas with excessive reduction capacity rising from the bottom of the blast furnace and gas reduction process,the excessive reduction capacity of the gas gradually decreases with the increase in the dydrogen content in the blast.In the all-carbon blast furnace,the excess gas reduction capacity is the strongest,and the total energy consumption per ton of iron reduction is the lowest.This shows that,for the current operation mode of the blast furnace,adding hydrogen in the blast furnace cannot reduce the consumption of carbon required for reduction per ton of iron,but rather increases the consumption of carbon.
基金The authors gratefully acknowledged the support from the Natural Science Foundation of Shanghai(No.19ZR1479400)the State Key Laboratory for Modication of Chemical Fibers and Polymer Materials,Donghua University(No.KF1818)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology).
文摘Developing anode catalysts of substantially enhanced activity for hydrogen oxidation reaction(HOR)and anti-CO poisoning performance is of great importance for the application of proton exchange membrane fuel cells(PEMFCs).Herein,we report Pd cluster in situ decorated urchin-like W_(18)O_(49)(WO_(2.72))electrocatalysts by a photo-reduction method for high performance HOR.The synthesized Pd-WO_(2.72)-L composite of low loading amount of 0.44 wt.%Pd by Xenon light reduction exhibits markedly high HOR catalytic activity and stability in 0.5 M H_(2)SO_(4),and the specific HOR current density and mass activity of Pd-WO_(2.72)-L are~1.5 and~80 times those of 20 wt.%Pt/C catalyst,respectively.Moreover,excellent anti-CO poisoning ability has also been obtained.The excellent HOR activity and anti-CO poisoning performance of Pd-WO_(2.72)-L have been discussed mainly in terms of the dual synergetic catalytic effects between Pd and WO_(2.72):Pd activation to Pd^(δ+)by the electron transfer from Pd to W promotes the hydrogen adsorption and activation to H*species,which results in largely elevated HOR activity;Pd degradation due to the CO poisoning is effectively prevented by WO_(2.72),which is responsible for the excellent CO-tolerance performance.
基金financially supported by the National Natural Science Foundation of China(Nos.31540035,61308095,21801092,and 11904128)the Program for the Development of Science and Technology of Jilin Province(Nos.20180520002JH and 20190103100JH)+1 种基金the 13th Five-Year Program for Science and Technology of Education Department of Jilin Province(Nos.JJKH20180769KJ and JJKH20180778KJ)the Graduate Innovation Project of Jilin Normal University(No.201941)。
文摘In this paper,we report our attempts to raise the efficiency of liquid reduction method when using high specific surface area TiO2(HSTiO2)by doping Au.Characterization of Au-HSTiO2 was conducted via XRD,UV-vis,SEM,and photocurrent intensity.The experimental results show that Au-HSTiO2 exhibits prominently higher photocatalytic hydrogen production than TiO2 and HSTiO2.Enhanced photosynthetic hydrogen production ability of Au-HSTiO2 should be attributed to the presence of abundant surface active sites of HSTiO2,remarkably extending electronic holes in Au doping.This study provides a promising photosynthetic material for hydrogen production.
文摘以氢气为还原剂,合成了高分散性的Pt_(-square)/石墨烯纳米复合物(Pt_(-square)/GNs).采用透射电子显微镜(TEM)、X-射线衍射(XRD)、X-射线电子能谱(XPS)及拉曼光谱(Ramam)等对Pt_(-square)/GNs样品进行了分析表征.分析结果表明氧化石墨、氯氩铂酸根离子被氢气彻底还原,特别是Pt前驱物的还原对氧化石墨的还原起原位同步催化作用,所获得的Pt纳米粒子呈现独特的方块状,平均直径为5 nm,均匀分布在石墨烯表面上.采用循环伏安法、计时电流法、CO溶出伏安法等电化学方法研究所合成复合物对甲醇氧化的电催化性能,结果表明相对于Pt/Vulcan XC-72R催化剂和商品化Pt/C催化剂,在碱性介质中Pt_(-square)/GNs对甲醇氧化表现出更高的电化学活性(680 m A·mg^(-1))、更好的催化剂稳定性及更强的抗CO毒化能力.