We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of ...We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of the Center of Gravity (CG) and the mean Aerodynamic Center (AC) on vertical flight was theoretically examined through static force balance considera- tion. We conducted a series of vertical takeoff tests in which the location of the mean AC was determined using an unsteady Blade Element Theory (BET) previously developed by the authors. Sequential images were captured during the takeoff tests using a high-speed camera. The results demonstrated that inherent pitching stability for vertical takeoff can be achieved by controlling the relative position between the CG and the mean AC of the flapping system.展开更多
In this work, we develop an artificial foldable wing that mimics the hind wing of a beetle (Allomyrina dichotoma). In real flight, the beetle unfolds forewings and hind wings, and maintains the unfolded configuratio...In this work, we develop an artificial foldable wing that mimics the hind wing of a beetle (Allomyrina dichotoma). In real flight, the beetle unfolds forewings and hind wings, and maintains the unfolded configuration unless it is exhausted. The artificial wing has to be able to maintain a fully unfolded configuration while flapping at a desirable flapping frequency. The artificial foldable hind wing developed in this work is based on two four-bar linkages which adapt the behaviors of the beetle's hind wing. The four-bar-linkages are designed to mimic rotational motion of the wing base and the vein folding/unfolding motion of the beetle's hind wing. The behavior of the artificial wings, which are installed in a flapping-wing system, is observed using a high-speed camera. The observation shows that the wing could maintain a fully unfolded configuration during flapping motion. A series of thrust measurements are also conducted to estimate the force generated by the flapping-wing system with foldable artificial wings. Although the artificial foldable wings give added burden to the flapping-wing system because of its weight, the thrust measurement results show that the flapping-wing system could still generate reasonable thrust.展开更多
Unlike birds, insects lack control surfaces at the tail and hence most insects modify their wing kinematics to produce control forces or moments while flapping their wings. Change of the flapping angle range is one of...Unlike birds, insects lack control surfaces at the tail and hence most insects modify their wing kinematics to produce control forces or moments while flapping their wings. Change of the flapping angle range is one of the ways to modify wing kinematics, resulting in relocation of the mean Aerodynamic force Center (mean AC) and finally creating control moments. In an attempt to mimic this feature, we developed a flapping-wing system that generates a desired pitching moment during flap- ping-wing motion. The system comprises a flapping mechanism that creates a large and symmetric flapping motion in a pair of wings, a flapping angle change mechanism that modifies the flapping angle range, artificial wings, and a power source. From the measured wing kinematics, we have found that the flapping-wing system can properly modify the flapping angle ranges. The measured pitching moments show that the flapping-wing system generates a pitching moment in a desired direction by shifting the flapping angle range. We also demonstrated that the system can in practice change the longitudinal attitude by generating a nonzero pitching moment.展开更多
Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength.Whether the optimization results meet the actual needs mainly depends on the accuracy o...Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength.Whether the optimization results meet the actual needs mainly depends on the accuracy of the material properties and the boundary conditions,especially for a tiny Flapping-wing Micro Aerial Vehicle(FMAV)transmission system manufactured by 3D printing.In this paper,experimental and numerical computation efforts were undertaken to gain a reliable topology optimization method for the bottom of the transmission system.First,the constitutive behavior of the ultraviolet(UV)curable resin used in fabrication was evaluated.Second,a numerical computation model describing further verified via experiments.Topology optimization modeling considering nonlinear factors,e.g.contact,friction and collision,was presented,and the optimization results were verified by both dynamic simulation and experiments.Finally,detailed discussions on different load cases and constraints were presented to clarify their effect on the optimization.Our methods and results presented in this paper may shed light on the lightweight design of a FMAV.展开更多
基金Basic Science Research Program through the National Research Foundation of Korea (NRF),The Ministry of Education,Science and Technology,The New & Renewable Energy R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP),The Korea government Ministry of Knowledge Economy,M.J.Kim appreciates the financial support from National Science Foundation
文摘We briefly summarized how to design and fabricate an insect-mimicking flapping-wing system and demonstrate how to implement inherent pitching stability for stable vertical takeoff. The effect of relative locations of the Center of Gravity (CG) and the mean Aerodynamic Center (AC) on vertical flight was theoretically examined through static force balance considera- tion. We conducted a series of vertical takeoff tests in which the location of the mean AC was determined using an unsteady Blade Element Theory (BET) previously developed by the authors. Sequential images were captured during the takeoff tests using a high-speed camera. The results demonstrated that inherent pitching stability for vertical takeoff can be achieved by controlling the relative position between the CG and the mean AC of the flapping system.
文摘In this work, we develop an artificial foldable wing that mimics the hind wing of a beetle (Allomyrina dichotoma). In real flight, the beetle unfolds forewings and hind wings, and maintains the unfolded configuration unless it is exhausted. The artificial wing has to be able to maintain a fully unfolded configuration while flapping at a desirable flapping frequency. The artificial foldable hind wing developed in this work is based on two four-bar linkages which adapt the behaviors of the beetle's hind wing. The four-bar-linkages are designed to mimic rotational motion of the wing base and the vein folding/unfolding motion of the beetle's hind wing. The behavior of the artificial wings, which are installed in a flapping-wing system, is observed using a high-speed camera. The observation shows that the wing could maintain a fully unfolded configuration during flapping motion. A series of thrust measurements are also conducted to estimate the force generated by the flapping-wing system with foldable artificial wings. Although the artificial foldable wings give added burden to the flapping-wing system because of its weight, the thrust measurement results show that the flapping-wing system could still generate reasonable thrust.
文摘Unlike birds, insects lack control surfaces at the tail and hence most insects modify their wing kinematics to produce control forces or moments while flapping their wings. Change of the flapping angle range is one of the ways to modify wing kinematics, resulting in relocation of the mean Aerodynamic force Center (mean AC) and finally creating control moments. In an attempt to mimic this feature, we developed a flapping-wing system that generates a desired pitching moment during flap- ping-wing motion. The system comprises a flapping mechanism that creates a large and symmetric flapping motion in a pair of wings, a flapping angle change mechanism that modifies the flapping angle range, artificial wings, and a power source. From the measured wing kinematics, we have found that the flapping-wing system can properly modify the flapping angle ranges. The measured pitching moments show that the flapping-wing system generates a pitching moment in a desired direction by shifting the flapping angle range. We also demonstrated that the system can in practice change the longitudinal attitude by generating a nonzero pitching moment.
基金supported by the National Natural Science Foundation of China(No.11672022)。
文摘Topology optimization is an effective method to obtain a lightweight structure that meets the requirements of structural strength.Whether the optimization results meet the actual needs mainly depends on the accuracy of the material properties and the boundary conditions,especially for a tiny Flapping-wing Micro Aerial Vehicle(FMAV)transmission system manufactured by 3D printing.In this paper,experimental and numerical computation efforts were undertaken to gain a reliable topology optimization method for the bottom of the transmission system.First,the constitutive behavior of the ultraviolet(UV)curable resin used in fabrication was evaluated.Second,a numerical computation model describing further verified via experiments.Topology optimization modeling considering nonlinear factors,e.g.contact,friction and collision,was presented,and the optimization results were verified by both dynamic simulation and experiments.Finally,detailed discussions on different load cases and constraints were presented to clarify their effect on the optimization.Our methods and results presented in this paper may shed light on the lightweight design of a FMAV.