Graphite is a dominant anode material for lithium-ion batteries(LIBs)due to its outstanding electrochemical performance.However,slow lithium ion(Li+)kinetics of graphite anode restricts its further application.Herein,...Graphite is a dominant anode material for lithium-ion batteries(LIBs)due to its outstanding electrochemical performance.However,slow lithium ion(Li+)kinetics of graphite anode restricts its further application.Herein,we report that high-temperature shock(HTS)can drive spent graphite(SG)into defect-rich recycled graphite(DRG)which is ideal for high-rate anode.The DRG exhibits the charging specific capacity of 323 mAh/g at a high current density of 2 C,which outperforms commercial graphite(CG,120 mAh/g).The eminent electrochemical performance of DRG can be attributed to the recovery of layered structure and partial remaining defects of SG during ultrafast heating and cooling process,which can effectively reduce total strain energy,accelerate the phase transition in thermodynamics and improve the Li+diffusion.This study provides a facile strategy to guide the re-graphitization of SG and design high performance battery electrode materials by defect engineering from the atomic level.展开更多
Changes in ambient temperature profoundly affect plant growth and performance.Therefore,the molecu-larbasis of plant acclimation to temperature fluctuation is of great interest.In this study,we discovered that GLYCINE...Changes in ambient temperature profoundly affect plant growth and performance.Therefore,the molecu-larbasis of plant acclimation to temperature fluctuation is of great interest.In this study,we discovered that GLYCINE-RICH RNA-BINDING PROTEIN 7(GRP7)contributes to cold and heat tolerance in Arabidopsis thaliana.We found that exposure to a warm temperature rapidly induces GRP7 condensates in planta,which can be reversed by transfer to a lower temperature.Cell biology and biochemical assays revealed that GRP7 undergoes liquid-liquid phase separation(LLPS)in vivo and in vitro.LLPS of GRP7 in the cyto-plasm contributes to the formation of stress granules that recruit RNA,along with the translation machinery component eukaryotic initiation factor 4E1(elF4E1)and the mRNA chaperones COLD SHOCK PROTEIN 1(CSP1)and CSP3,to inhibit translation.Moreover,natural variations in GRP7 affecting the residue phos-phorylated by the receptorkinase FERONIA alter its capacity to undergo LLPS and correlate with the adap-tation of some Arabidopsis accessions to a widertemperature range.Taken together,ourfindings illustrate the role of translational control mediated by GRP7 LLPS to confer plants with temperature resilience.展开更多
The thermal protection performance of superalloy honeycomb structure in high-temperature environments are important for thermal protection design of high-speed aircrafts. By using a self-developed transient aerodynami...The thermal protection performance of superalloy honeycomb structure in high-temperature environments are important for thermal protection design of high-speed aircrafts. By using a self-developed transient aerodynamic thermal simulation system, the thermal protection performance of superalloy honeycomb panel was tested in this paper at different transient heating rates ranging from 5℃/s to 30℃/s, with the maximum instantaneous temperature reaching 950℃. Furthermore, the thermal protection performance of superalloy honeycomb struc- ture under simulated thermal environments was computed for different high heat- ing rates by using 3D finite element method, and a comparison between calcu- lational and experimental results was carded out. The results of this research provide an important reference for the design of thermal protection systems com- prising superalloy honeycomb panel.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.52171219 and 91963113).
文摘Graphite is a dominant anode material for lithium-ion batteries(LIBs)due to its outstanding electrochemical performance.However,slow lithium ion(Li+)kinetics of graphite anode restricts its further application.Herein,we report that high-temperature shock(HTS)can drive spent graphite(SG)into defect-rich recycled graphite(DRG)which is ideal for high-rate anode.The DRG exhibits the charging specific capacity of 323 mAh/g at a high current density of 2 C,which outperforms commercial graphite(CG,120 mAh/g).The eminent electrochemical performance of DRG can be attributed to the recovery of layered structure and partial remaining defects of SG during ultrafast heating and cooling process,which can effectively reduce total strain energy,accelerate the phase transition in thermodynamics and improve the Li+diffusion.This study provides a facile strategy to guide the re-graphitization of SG and design high performance battery electrode materials by defect engineering from the atomic level.
基金supported by grants from National Natural Science Foundation of China(NSFC-32000208 and NSFC-32070769)National Key R&D Program of China(2023YFD1401100)+1 种基金China Postdoctoral Science Foundation funded project(2020M672475)the Science and Technology Innovation Program of Hunan Province(Nonos.2021JJ10015,2021JJ40060,2023ZJ1080,and 2021JJ40056).
文摘Changes in ambient temperature profoundly affect plant growth and performance.Therefore,the molecu-larbasis of plant acclimation to temperature fluctuation is of great interest.In this study,we discovered that GLYCINE-RICH RNA-BINDING PROTEIN 7(GRP7)contributes to cold and heat tolerance in Arabidopsis thaliana.We found that exposure to a warm temperature rapidly induces GRP7 condensates in planta,which can be reversed by transfer to a lower temperature.Cell biology and biochemical assays revealed that GRP7 undergoes liquid-liquid phase separation(LLPS)in vivo and in vitro.LLPS of GRP7 in the cyto-plasm contributes to the formation of stress granules that recruit RNA,along with the translation machinery component eukaryotic initiation factor 4E1(elF4E1)and the mRNA chaperones COLD SHOCK PROTEIN 1(CSP1)and CSP3,to inhibit translation.Moreover,natural variations in GRP7 affecting the residue phos-phorylated by the receptorkinase FERONIA alter its capacity to undergo LLPS and correlate with the adap-tation of some Arabidopsis accessions to a widertemperature range.Taken together,ourfindings illustrate the role of translational control mediated by GRP7 LLPS to confer plants with temperature resilience.
基金supported by the National Natural Science Foundation of China(11172026 and 91216301)the Specialized Research Fund for the Doctoral Program of Higher Education(20131102110014)
文摘The thermal protection performance of superalloy honeycomb structure in high-temperature environments are important for thermal protection design of high-speed aircrafts. By using a self-developed transient aerodynamic thermal simulation system, the thermal protection performance of superalloy honeycomb panel was tested in this paper at different transient heating rates ranging from 5℃/s to 30℃/s, with the maximum instantaneous temperature reaching 950℃. Furthermore, the thermal protection performance of superalloy honeycomb struc- ture under simulated thermal environments was computed for different high heat- ing rates by using 3D finite element method, and a comparison between calcu- lational and experimental results was carded out. The results of this research provide an important reference for the design of thermal protection systems com- prising superalloy honeycomb panel.