期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于二分图的个性化图像标签推荐算法
被引量:
2
1
作者
赵天龙
刘峥
+1 位作者
韩慧健
张彩明
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第6期1193-1205,共13页
传统的图像标签推荐方法通过对图像视觉内容的分析计算标签与图像的相关度,完成标签推荐任务.而社会网络图像具有丰富的元数据,例如图像所属群组、地理位置等,充分利用这些元数据对于提高标签推荐的准确性具有积极意义.提出一种基于二...
传统的图像标签推荐方法通过对图像视觉内容的分析计算标签与图像的相关度,完成标签推荐任务.而社会网络图像具有丰富的元数据,例如图像所属群组、地理位置等,充分利用这些元数据对于提高标签推荐的准确性具有积极意义.提出一种基于二分图的个性化图像标签推荐算法,通过充分挖掘图像、群组、地理位置与标签的关系,针对用户提供的少量标签进行个性化图像标签推荐.该算法建立了图像-标签、群组-标签、地理位置-标签等三个二分图模型,考虑到每个标签的重要性不同,引入TF-IDF(Term Frequency-Inverse Document Frenquency)技术对标签进行加权处理.利用二分图将初始标签分值进行信息扩散,计算出最终标签分值向量,并将该向量中分值较高的标签作为推荐结果.实验结果表明,融合了图像与群组、地理位置等元数据的个性化图像标签推荐结果的NDCG(Normalized Discounted Cumulative Gain)值优于仅单方面考虑图像、群组以及地理位置的标签推荐结果.
展开更多
关键词
图像元数据
标签偏好
二分图
个性化标签推荐
标签排序
下载PDF
职称材料
融合标签和长短期兴趣的矩阵分解推荐算法
被引量:
3
2
作者
姬璐
于万钧
陈颖
《计算机工程与设计》
北大核心
2023年第3期777-783,共7页
为提高用户兴趣挖掘的准确性,实现更加精准的用户个性化推荐,提出一种融合标签和长短期兴趣的矩阵分解推荐算法。利用用户使用各标签的次数和生命周期挖掘用户的长短期兴趣,计算用户标签偏好值;利用用户标签偏好值比较用户间的兴趣,获...
为提高用户兴趣挖掘的准确性,实现更加精准的用户个性化推荐,提出一种融合标签和长短期兴趣的矩阵分解推荐算法。利用用户使用各标签的次数和生命周期挖掘用户的长短期兴趣,计算用户标签偏好值;利用用户标签偏好值比较用户间的兴趣,获得更加精准的用户间兴趣相似度;将用户间兴趣相似度引入矩阵分解模型,预测项目评分并进行推荐。实验结果表明,该算法挖掘出的用户兴趣比其它推荐算法准确。
展开更多
关键词
用户个性化推荐
协同过滤推荐算法
矩阵分解
标签信息
长短期兴趣
用户标签偏好值
兴趣相似度
下载PDF
职称材料
P2P环境下基于社会化标签的个性化推荐模型研究
被引量:
3
3
作者
赵艳
王亚民
《现代图书情报技术》
CSSCI
北大核心
2014年第5期50-57,共8页
【目的】利用用户使用标签的频率和时间因素计算用户的标签偏好向量,讨论用户兴趣的动态变化性对个性化推荐准确性的影响。【方法】构建P2P环境下基于社会化标签的个性化推荐模型,详细说明用户偏好的计算过程及推荐流程,并以西安某高校...
【目的】利用用户使用标签的频率和时间因素计算用户的标签偏好向量,讨论用户兴趣的动态变化性对个性化推荐准确性的影响。【方法】构建P2P环境下基于社会化标签的个性化推荐模型,详细说明用户偏好的计算过程及推荐流程,并以西安某高校的P2P电影分享系统为对象进行实验验证。【结果】在随机选择的10名目标用户中,对其中8名用户的推荐命中率均高于传统基于用户评分的协同过滤推荐,说明综合用户标签使用频率和时间因素的推荐效果的优越性。【局限】由于本文主要研究用户兴趣的动态性对个性化推荐的影响,因此只在实验时人工删除无意义标签、合并相似标签,并没有引入有效的控制标签模糊性机制。【结论】在个性化推荐中,考虑用户兴趣的动态变化性,有助于提高推荐结果的准确性。
展开更多
关键词
社会化标签
个性化推荐
标签偏好向量
P2P
原文传递
题名
基于二分图的个性化图像标签推荐算法
被引量:
2
1
作者
赵天龙
刘峥
韩慧健
张彩明
机构
山东财经大学计算机科学与技术学院
山东省数字媒体技术重点实验室
山东大学软件学院
山东省高等学校协同创新中心:未来智能计算
出处
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第6期1193-1205,共13页
基金
国家自然科学基金(61772309,61303090,61472221,61332015)
国家自然科学基金浙江两化融合重点项目(U1609218)
+4 种基金
教育部人文社会科学研究项目(13YJC860023)
济南市高校自主创新计划(201303012)
济南市青年科技明星计划(201406001)
山东省自然科学基金省属高校优秀青年人才联合基金(ZR2018JL022)
山东省高校科研创新团队
文摘
传统的图像标签推荐方法通过对图像视觉内容的分析计算标签与图像的相关度,完成标签推荐任务.而社会网络图像具有丰富的元数据,例如图像所属群组、地理位置等,充分利用这些元数据对于提高标签推荐的准确性具有积极意义.提出一种基于二分图的个性化图像标签推荐算法,通过充分挖掘图像、群组、地理位置与标签的关系,针对用户提供的少量标签进行个性化图像标签推荐.该算法建立了图像-标签、群组-标签、地理位置-标签等三个二分图模型,考虑到每个标签的重要性不同,引入TF-IDF(Term Frequency-Inverse Document Frenquency)技术对标签进行加权处理.利用二分图将初始标签分值进行信息扩散,计算出最终标签分值向量,并将该向量中分值较高的标签作为推荐结果.实验结果表明,融合了图像与群组、地理位置等元数据的个性化图像标签推荐结果的NDCG(Normalized Discounted Cumulative Gain)值优于仅单方面考虑图像、群组以及地理位置的标签推荐结果.
关键词
图像元数据
标签偏好
二分图
个性化标签推荐
标签排序
Keywords
image
metadata
tag
preference
bipartite
graph
personalized
tag
recommendation
tag
ranking
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
融合标签和长短期兴趣的矩阵分解推荐算法
被引量:
3
2
作者
姬璐
于万钧
陈颖
机构
上海应用技术大学计算机科学与信息工程学院
出处
《计算机工程与设计》
北大核心
2023年第3期777-783,共7页
基金
国家自然科学基金项目(61976140)。
文摘
为提高用户兴趣挖掘的准确性,实现更加精准的用户个性化推荐,提出一种融合标签和长短期兴趣的矩阵分解推荐算法。利用用户使用各标签的次数和生命周期挖掘用户的长短期兴趣,计算用户标签偏好值;利用用户标签偏好值比较用户间的兴趣,获得更加精准的用户间兴趣相似度;将用户间兴趣相似度引入矩阵分解模型,预测项目评分并进行推荐。实验结果表明,该算法挖掘出的用户兴趣比其它推荐算法准确。
关键词
用户个性化推荐
协同过滤推荐算法
矩阵分解
标签信息
长短期兴趣
用户标签偏好值
兴趣相似度
Keywords
user
personalized
recommendation
collaborative
filtering
recommendation
algorithm
matrix
decomposition
tag
information
short-term
and
long-term
preference
user-
tag
preference
value
interest
similarity
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
P2P环境下基于社会化标签的个性化推荐模型研究
被引量:
3
3
作者
赵艳
王亚民
机构
西安电子科技大学经济与管理学院
出处
《现代图书情报技术》
CSSCI
北大核心
2014年第5期50-57,共8页
文摘
【目的】利用用户使用标签的频率和时间因素计算用户的标签偏好向量,讨论用户兴趣的动态变化性对个性化推荐准确性的影响。【方法】构建P2P环境下基于社会化标签的个性化推荐模型,详细说明用户偏好的计算过程及推荐流程,并以西安某高校的P2P电影分享系统为对象进行实验验证。【结果】在随机选择的10名目标用户中,对其中8名用户的推荐命中率均高于传统基于用户评分的协同过滤推荐,说明综合用户标签使用频率和时间因素的推荐效果的优越性。【局限】由于本文主要研究用户兴趣的动态性对个性化推荐的影响,因此只在实验时人工删除无意义标签、合并相似标签,并没有引入有效的控制标签模糊性机制。【结论】在个性化推荐中,考虑用户兴趣的动态变化性,有助于提高推荐结果的准确性。
关键词
社会化标签
个性化推荐
标签偏好向量
P2P
Keywords
Social
tag
ging
Personalized
recommendation
tag
preference
vector
P2P
分类号
TP391.3 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于二分图的个性化图像标签推荐算法
赵天龙
刘峥
韩慧健
张彩明
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2018
2
下载PDF
职称材料
2
融合标签和长短期兴趣的矩阵分解推荐算法
姬璐
于万钧
陈颖
《计算机工程与设计》
北大核心
2023
3
下载PDF
职称材料
3
P2P环境下基于社会化标签的个性化推荐模型研究
赵艳
王亚民
《现代图书情报技术》
CSSCI
北大核心
2014
3
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部