Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the f...Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the focused fields and phase distributions at focus are largely influenced by both the polarization order and topological charge of the incident beams. Moreover, focal spots with flat-topped or tightly-focused patterns can be flexibly achieved by carefully choosing the polar- ization order and the topological charge, which confirms the potential of such beams in wide applications, such as optical tweezers, laser printing, lithography, and material processing.展开更多
The new beam position monitor(BPM) system of the injector at the upgrade project of the Hefei Light Source(HLS II) has 19 stripline beam position monitors. Most consist of four orthogonally symmetric stripline ele...The new beam position monitor(BPM) system of the injector at the upgrade project of the Hefei Light Source(HLS II) has 19 stripline beam position monitors. Most consist of four orthogonally symmetric stripline electrodes. Differences in electronic gain and mismachining tolerance can cause changes in the beam response of the BPM electrodes. This variation will couple the two measured horizontal positions, resulting in measuring error. To alleviate this effect, a new technique to measure the relative response of the four electrodes has been developed. It is independent of the beam charge, and the related coefficient can be calculated theoretically. The effect of electrode coupling on this technique is analyzed. The calibration data is used to fit the gain for all 19 injector beam position monitors. The results show the standard deviation of the distribution of measured gains is about 5%.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61108047 and 61240057)the Program for New Century Excellent Talentsin University,China(Grant No.NCET-13-0667)the Beijing Excellent Talent Training Project,China(Grant No.2011D005007000008)
文摘Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the focused fields and phase distributions at focus are largely influenced by both the polarization order and topological charge of the incident beams. Moreover, focal spots with flat-topped or tightly-focused patterns can be flexibly achieved by carefully choosing the polar- ization order and the topological charge, which confirms the potential of such beams in wide applications, such as optical tweezers, laser printing, lithography, and material processing.
基金Supported by National Natural Science Foundation of China(11175173,11375178,11105141)
文摘The new beam position monitor(BPM) system of the injector at the upgrade project of the Hefei Light Source(HLS II) has 19 stripline beam position monitors. Most consist of four orthogonally symmetric stripline electrodes. Differences in electronic gain and mismachining tolerance can cause changes in the beam response of the BPM electrodes. This variation will couple the two measured horizontal positions, resulting in measuring error. To alleviate this effect, a new technique to measure the relative response of the four electrodes has been developed. It is independent of the beam charge, and the related coefficient can be calculated theoretically. The effect of electrode coupling on this technique is analyzed. The calibration data is used to fit the gain for all 19 injector beam position monitors. The results show the standard deviation of the distribution of measured gains is about 5%.