Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cat...Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cathode serves as a key component in LIB,its properties significantly affect the performance of the whole system.Recently,the cathode surface modification based on coating technique has been widely employed to enhance the electrochemical performances by improving the material conductivity,stabilising the physical structure of materials,as well as preventing the reactions between the electrode and electrolyte.In this work,we reviewed the present of a number of promising cathode materials for Li-ion batteries.After that,we summarized the very recent research progress focusing on the surface coating strategies,mainly including the coating materials,the coating technologies,as well as the corresponding working mechanisms for cathodes.At last,the challenges faced and future guidelines for optimizing cathode materials are discussed.In this study,we propose that the structure of cathode is a crucial factor during the selection of coating materials and technologies.展开更多
This paper has predicted the range and volume of unsteady sheet cavitation of a propeller by using the surface panel method. The linearization in cavity thickness is adopted to reduce the computing time and storage sp...This paper has predicted the range and volume of unsteady sheet cavitation of a propeller by using the surface panel method. The linearization in cavity thickness is adopted to reduce the computing time and storage space. The iteration scheme between chordwise strips has been used because the range and volume of cavitation are both unknown. The propeller cavitation range determined by the calculation method presented in this paper agrees with the observation results of cavity image at cavitation tunnel very well, and this proves the practicability of the method.展开更多
基金the financial support from Research Training Program(RTP)funded by the Department of Education,Australian Government。
文摘Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cathode serves as a key component in LIB,its properties significantly affect the performance of the whole system.Recently,the cathode surface modification based on coating technique has been widely employed to enhance the electrochemical performances by improving the material conductivity,stabilising the physical structure of materials,as well as preventing the reactions between the electrode and electrolyte.In this work,we reviewed the present of a number of promising cathode materials for Li-ion batteries.After that,we summarized the very recent research progress focusing on the surface coating strategies,mainly including the coating materials,the coating technologies,as well as the corresponding working mechanisms for cathodes.At last,the challenges faced and future guidelines for optimizing cathode materials are discussed.In this study,we propose that the structure of cathode is a crucial factor during the selection of coating materials and technologies.
文摘This paper has predicted the range and volume of unsteady sheet cavitation of a propeller by using the surface panel method. The linearization in cavity thickness is adopted to reduce the computing time and storage space. The iteration scheme between chordwise strips has been used because the range and volume of cavitation are both unknown. The propeller cavitation range determined by the calculation method presented in this paper agrees with the observation results of cavity image at cavitation tunnel very well, and this proves the practicability of the method.