Mixtures of NaHSO4·H2O and LiCoO2 extracted from spent lithium-ion batteries were prepared with molar ratios of 1:1, 1:2 and 1:3. The chemical evolution of the LiCoO2 and NaHSO4-H20 mixtures during the roastin...Mixtures of NaHSO4·H2O and LiCoO2 extracted from spent lithium-ion batteries were prepared with molar ratios of 1:1, 1:2 and 1:3. The chemical evolution of the LiCoO2 and NaHSO4-H20 mixtures during the roasting process was investigated by means of thermogravimetric analysis and differential scanning calorimetry (TG-DSC), X-ray diffraction(XRD), scanning electron (XPS). The results show that the chemical reactions in microscopy(SEM), and X-ray photoelectron spectroscopy the LiCoO2 and NaHSO4·H2O mixtures proceed during the roasting process. The Li element in the product of the roasting process is in the form of LiNa(SO4). With the increase of the proportion of NaHSO4·H2O in the mixtures, the Co element evolves as follows: LiCoO2→Co3O4→Na6Co(SOa)4→Na2Co(SO4)2. The roasting products exhibit dense structures and irregular shapes, and the bonding energy of Co increases.展开更多
The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasib...The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasibility of the phase transformation to metal sulfates and to gaseous HF and HCl.Under the sulfating roasting conditions of the roasting temperature of 250°C and the sulfuric acid excess coefficient of 1.8,over 74 wt.%of F and 98 wt.%of Cl were volatilized into flue gas.Approximately 98.6 wt.%of Zn and 96.5 wt.%of Cu in the roasting product were dissolved into the leaching solution after the water leaching process,while the leaching efficiencies of Pb and Sn were only 0.12%and 0.22%,respectively.The mechanism studies indicate the pivotal effect of roasting temperature on the sulphation reactions from various metal species to metal sulfates and the salting out reactions from various metal halides to gaseous hydrogen halides.展开更多
Some processes of sulfating roasting and water leaching of crude Mianning RE concentrate ore, of fine Mianning RE concentrate ore, of Baotou RE concentrate ore and of their mixture were investigated.The result shows t...Some processes of sulfating roasting and water leaching of crude Mianning RE concentrate ore, of fine Mianning RE concentrate ore, of Baotou RE concentrate ore and of their mixture were investigated.The result shows that the mixture of Mianning and Baotou RE concentrate ore has the optimum leaching rate and rate of recovery when the mixture ratio is 1:4.The recovery rate of the mixture is higher by 14.76% than that of crude Mianning RE concentrate ore, by 5.0 % than that of Mianning fine RE concentrate ore and by 2.4 % than that of Baotou RE concentrate ore.展开更多
基金Supported by the National Natural Science Foundation of China(No.51264027) and the National Basic Research Program of China(No .2012CB722806).
文摘Mixtures of NaHSO4·H2O and LiCoO2 extracted from spent lithium-ion batteries were prepared with molar ratios of 1:1, 1:2 and 1:3. The chemical evolution of the LiCoO2 and NaHSO4-H20 mixtures during the roasting process was investigated by means of thermogravimetric analysis and differential scanning calorimetry (TG-DSC), X-ray diffraction(XRD), scanning electron (XPS). The results show that the chemical reactions in microscopy(SEM), and X-ray photoelectron spectroscopy the LiCoO2 and NaHSO4·H2O mixtures proceed during the roasting process. The Li element in the product of the roasting process is in the form of LiNa(SO4). With the increase of the proportion of NaHSO4·H2O in the mixtures, the Co element evolves as follows: LiCoO2→Co3O4→Na6Co(SOa)4→Na2Co(SO4)2. The roasting products exhibit dense structures and irregular shapes, and the bonding energy of Co increases.
基金the National Key Research and Development Program of China(No.2019YFC1908400)the National Natural Science Foundation of China(Nos.52174334,52374413)+3 种基金the Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects,China(Nos.20212BCJ23007,20212BCJL23052)the Jiangxi Provincial Natural Science Foundation,China(Nos.20224ACB214009,20224BAB214040)the Double Thousand Plan of Jiangxi Province,China(No.S2021GDQN2970)the Distinguished Professor Program of Jinggang Scholars in Institutions of Higher Learning of Jiangxi Province,China.
文摘The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasibility of the phase transformation to metal sulfates and to gaseous HF and HCl.Under the sulfating roasting conditions of the roasting temperature of 250°C and the sulfuric acid excess coefficient of 1.8,over 74 wt.%of F and 98 wt.%of Cl were volatilized into flue gas.Approximately 98.6 wt.%of Zn and 96.5 wt.%of Cu in the roasting product were dissolved into the leaching solution after the water leaching process,while the leaching efficiencies of Pb and Sn were only 0.12%and 0.22%,respectively.The mechanism studies indicate the pivotal effect of roasting temperature on the sulphation reactions from various metal species to metal sulfates and the salting out reactions from various metal halides to gaseous hydrogen halides.
文摘Some processes of sulfating roasting and water leaching of crude Mianning RE concentrate ore, of fine Mianning RE concentrate ore, of Baotou RE concentrate ore and of their mixture were investigated.The result shows that the mixture of Mianning and Baotou RE concentrate ore has the optimum leaching rate and rate of recovery when the mixture ratio is 1:4.The recovery rate of the mixture is higher by 14.76% than that of crude Mianning RE concentrate ore, by 5.0 % than that of Mianning fine RE concentrate ore and by 2.4 % than that of Baotou RE concentrate ore.