Distribution of vegetation is closely coupled with climate; the climate controls distribution of vegetation and the vegetation type reflects regional climates. To reveal vegetation_climate relationships is the foundat...Distribution of vegetation is closely coupled with climate; the climate controls distribution of vegetation and the vegetation type reflects regional climates. To reveal vegetation_climate relationships is the foundation for understanding the vegetation distribution and theoretically serving vegetation regionalization. Vegetation regionalization is a theoretical integration of vegetation studies and provides a base for physiogeographical regionalization as well as agriculture and forestry regionalization. Based on a brief historical overview on studies of vegetation_climate relationships and vegetation regionalization conducted in China, we review the principles, bases and major schemes of previous vegetation regionalization and discuss on several contentious boundaries of vegetation zones in the present paper. We proposed that, under the circumstances that the primary vegetation has been destroyed in most parts of China, the division of vegetation zones/regions should be based on the distribution of primary and its secondary vegetation types and climatic indices that delimit distribution of the vegetation types. This not only reveals the closed relationship between vegetation and climate, but also is feasible practically. Although there still are divergence of views on the name and their boundaries of the several vegetation zones, it is commonly accepted that there are eight major vegetation regions in China, i.e. cold temperate needleleaf forest region, temperate needleleaf and broadleaf mixed forest region, warm temperate deciduous broadleaf forest region, subtropical evergreen broadleaf forest region, tropical monsoon forest and rain forest region, temperate steppe region, temperate desert region, and Qinghai_Xizang (Tibetan) Plateau high_cold vegetation region. Analyzing characteristics of vegetation and climate of major vegetation boundaries, we suggested that: 1) Qinling Mountain_Huaihe River line is an important arid/humid climatic, but not a thermal climatic boundary, and thus can not also be regarde展开更多
Urbanization often exerts multiple effects on aquatic and terrestrial organisms,including changes in biodiversity,species composition and ecosystem functions.However,the impacts of urbanization on river phytoplankton ...Urbanization often exerts multiple effects on aquatic and terrestrial organisms,including changes in biodiversity,species composition and ecosystem functions.However,the impacts of urbanization on river phytoplankton in subtropical urbanizing watersheds remain largely unknown.Here,we explored the effects of urbanization on phytoplankton community structure(i.e.,biomass,community composition and diversity)and function(i.e.,resource use efficiency)in a subtropical river at watershed scale in southeast China over 6 years.A total of 318 phytoplankton species belonging into 120 genera and 7 phyla were identified from 108 samples.Bacillariophyta biomass showed an increasing trend with increasing urbanization level.The phytoplankton community shifted from Chlorophyta dominance in rural upstream waters to Bacillariophyta dominance in urbanized downstream waters.Furthermore,phytoplankton diversity and resource use efficiency(RUE=phytoplankton biomass/total phosphorus)were significantly decreased with increasing urbanization level from upstream to downstream.Phytoplankton RUE exhibited a significant positive correlation with species richness,but a negative correlation with phytoplankton evenness.The variation in environmental factors(turbidity,total nitrogen,NH_(4)^(+)-N,total phosphorus,PO_(4)^(3-)-P and percentage urbanized area)was significantly correlated with phytoplankton diversity and RUE.Overall,our results revealed the influence of urbanization on phytoplankton community structure and ecosystem function was due to its altering the environmental conditions.Therefore,human-driven urbanization may play crucial roles in shaping the structure and function of phytoplankton communities in subtropical rivers,and the mechanism of this process can provide important information for freshwater sustainable uses,watershed management and conservation.展开更多
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i...Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.展开更多
Using daily NCEP/NCAR reanalysis dataset and observation rainfall data in China for the 1971-2000 period, a subtropical summer monsoon index has been defined by meridional moisture transport of the total atmosphere co...Using daily NCEP/NCAR reanalysis dataset and observation rainfall data in China for the 1971-2000 period, a subtropical summer monsoon index has been defined by meridional moisture transport of the total atmosphere column. Results show that the subtropical summer monsoon index defined by the difference of meridional moisture transport between South China and North China can be used to describe the intensity of the subtropical summer monsoon. High (low) index is corresponding to strong (weak) subtropical summer monsoon. And the new index is well related to the summer rainfall over the middle and lower reaches of Yangtze River. In addition, the convergence of moisture transport from the west Pacific via the South China Sea and that from the North China may be responsible for the anomalously excessive summer rainfall over the middle and lower reaches of Yangtze River.展开更多
Based on the data of NCEP, OLR and rainfall of China, we studied the influences of the East Asian winter monsoon activities on the precipitation during the raining season over China by correlation analysis and composi...Based on the data of NCEP, OLR and rainfall of China, we studied the influences of the East Asian winter monsoon activities on the precipitation during the raining season over China by correlation analysis and composite analysis. The result shows that annual and interdecadal change of East Asian winter monsoon is distinct. It is strong from 1950s to the middle of 1980s but weak after the middle of 1980s. The effect of abnormal winter monsoon on the precipitation during raining season is significant over the middle and lower reaches of the Changjiang River basin. It is revealed that the precipitation will increase when preceding winter monsoon is weak but decrease when preceding winter monsoon is strong. In this paper, some appropriate reasons are given to explain the abnormal rainfall by analyzing the distribution of SSTA and the variation of summer circulation. It is pointed out definitely that the variation of SSTA and summer circulation is a primary cause for abnormal rainfall over the middle and lower reaches of the Changjiang River.展开更多
Using daily outgoing long-wave radiation (OLR) data from the National Oceanic and Atmospheric Administration (NOAA) and the National Center for Environmental Prediction/National Center for Atmospheric Research (N...Using daily outgoing long-wave radiation (OLR) data from the National Oceanic and Atmospheric Administration (NOAA) and the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data of geopotential height fields for 1979-2006, the relationship between persistent heavy rain events (PHREs) in the Huaihe River valley (HRV) and the distribution pattern of convective activity in the tropical western Pacific warm pool (WPWP) is investigated. Based on nine cases of PHREs in the HRV, common characteristics of the West Pacific subtropical high (WPSH) show that the northern edge of the WPSH continues to lie in the HRV and is associated with the persistent "north weak south strong" distribution pattern of convective activities in the WPWP. Composite analysis of OLR leading the circulation indicates that the response of the WPSH to OLR anomaly patterns lags by about 1-2 days. In order to explain the reason for the effects of the distribution pattern of convective activities in the WPWP on the persistent northern edge of the WPSH in the HRV, four typical persistent heavy and light rain events in the Yangtze River valley (YRV) are contrasted with the PHREs in the HRV. The comparison indicates that when the distribution pattern of the convective activities anomaly behaves in a weak (strong) manner across the whole WPWP, persistent heavy (light) rain tends to occur in the YRV. When the distribution pattern of the convective activities anomaly behaves according to the "north weak south strong" pattern in the WPWP, persistent heavy rain tends to occur in the HRV. The effects of the "north weak south strong" distribution pattern of convective activities on PHREs in the HRV are not obvious over the seasonal mean timescale, perhaps due to the non-extreme status of convective activities in the WPWP.展开更多
文摘Distribution of vegetation is closely coupled with climate; the climate controls distribution of vegetation and the vegetation type reflects regional climates. To reveal vegetation_climate relationships is the foundation for understanding the vegetation distribution and theoretically serving vegetation regionalization. Vegetation regionalization is a theoretical integration of vegetation studies and provides a base for physiogeographical regionalization as well as agriculture and forestry regionalization. Based on a brief historical overview on studies of vegetation_climate relationships and vegetation regionalization conducted in China, we review the principles, bases and major schemes of previous vegetation regionalization and discuss on several contentious boundaries of vegetation zones in the present paper. We proposed that, under the circumstances that the primary vegetation has been destroyed in most parts of China, the division of vegetation zones/regions should be based on the distribution of primary and its secondary vegetation types and climatic indices that delimit distribution of the vegetation types. This not only reveals the closed relationship between vegetation and climate, but also is feasible practically. Although there still are divergence of views on the name and their boundaries of the several vegetation zones, it is commonly accepted that there are eight major vegetation regions in China, i.e. cold temperate needleleaf forest region, temperate needleleaf and broadleaf mixed forest region, warm temperate deciduous broadleaf forest region, subtropical evergreen broadleaf forest region, tropical monsoon forest and rain forest region, temperate steppe region, temperate desert region, and Qinghai_Xizang (Tibetan) Plateau high_cold vegetation region. Analyzing characteristics of vegetation and climate of major vegetation boundaries, we suggested that: 1) Qinling Mountain_Huaihe River line is an important arid/humid climatic, but not a thermal climatic boundary, and thus can not also be regarde
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23040302)the National Natural Science Foundation of China(No.91851104)the Natural Science Foundation of Fujian Province of China(No.2019J02016)。
文摘Urbanization often exerts multiple effects on aquatic and terrestrial organisms,including changes in biodiversity,species composition and ecosystem functions.However,the impacts of urbanization on river phytoplankton in subtropical urbanizing watersheds remain largely unknown.Here,we explored the effects of urbanization on phytoplankton community structure(i.e.,biomass,community composition and diversity)and function(i.e.,resource use efficiency)in a subtropical river at watershed scale in southeast China over 6 years.A total of 318 phytoplankton species belonging into 120 genera and 7 phyla were identified from 108 samples.Bacillariophyta biomass showed an increasing trend with increasing urbanization level.The phytoplankton community shifted from Chlorophyta dominance in rural upstream waters to Bacillariophyta dominance in urbanized downstream waters.Furthermore,phytoplankton diversity and resource use efficiency(RUE=phytoplankton biomass/total phosphorus)were significantly decreased with increasing urbanization level from upstream to downstream.Phytoplankton RUE exhibited a significant positive correlation with species richness,but a negative correlation with phytoplankton evenness.The variation in environmental factors(turbidity,total nitrogen,NH_(4)^(+)-N,total phosphorus,PO_(4)^(3-)-P and percentage urbanized area)was significantly correlated with phytoplankton diversity and RUE.Overall,our results revealed the influence of urbanization on phytoplankton community structure and ecosystem function was due to its altering the environmental conditions.Therefore,human-driven urbanization may play crucial roles in shaping the structure and function of phytoplankton communities in subtropical rivers,and the mechanism of this process can provide important information for freshwater sustainable uses,watershed management and conservation.
基金supported by the 2nd Scientific Expedition to the Qinghai–Tibet Plateau[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant number 42275045,41975012]+3 种基金the West Light Foundation of the Chinese Academy of Sciences[grant number xbzg-zdsys-202215]the Science and Technology Research Plan of Gansu Province[grant number 20JR10RA070]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number QCH2019004]iLEAPs(integrated Land Ecosystem–Atmosphere Processes Study).
文摘Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ.
基金Research on Interdecadal Variation of the Progression of Subtropical Summer Monsoon inEast Asia, a specialized project of China Meteorological AdministrationResearch on Subtropical Monsoon, aspecialized project of Shanghai Meteorological Bureau
文摘Using daily NCEP/NCAR reanalysis dataset and observation rainfall data in China for the 1971-2000 period, a subtropical summer monsoon index has been defined by meridional moisture transport of the total atmosphere column. Results show that the subtropical summer monsoon index defined by the difference of meridional moisture transport between South China and North China can be used to describe the intensity of the subtropical summer monsoon. High (low) index is corresponding to strong (weak) subtropical summer monsoon. And the new index is well related to the summer rainfall over the middle and lower reaches of Yangtze River. In addition, the convergence of moisture transport from the west Pacific via the South China Sea and that from the North China may be responsible for the anomalously excessive summer rainfall over the middle and lower reaches of Yangtze River.
基金East Asia winter monsoon and Yunnan summertime drought and floods and their interdecadal anomalies a project of the Yunnan Province Science Foundation a Yunnan Province Foundation project (97D022G)
文摘Based on the data of NCEP, OLR and rainfall of China, we studied the influences of the East Asian winter monsoon activities on the precipitation during the raining season over China by correlation analysis and composite analysis. The result shows that annual and interdecadal change of East Asian winter monsoon is distinct. It is strong from 1950s to the middle of 1980s but weak after the middle of 1980s. The effect of abnormal winter monsoon on the precipitation during raining season is significant over the middle and lower reaches of the Changjiang River basin. It is revealed that the precipitation will increase when preceding winter monsoon is weak but decrease when preceding winter monsoon is strong. In this paper, some appropriate reasons are given to explain the abnormal rainfall by analyzing the distribution of SSTA and the variation of summer circulation. It is pointed out definitely that the variation of SSTA and summer circulation is a primary cause for abnormal rainfall over the middle and lower reaches of the Changjiang River.
基金This study was supported by the "National Key Programme for Developing Basic Science" projects under Grant No. 2004CB418303the National Natural Science Foundation of China under Grant No. 40705022.
文摘Using daily outgoing long-wave radiation (OLR) data from the National Oceanic and Atmospheric Administration (NOAA) and the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data of geopotential height fields for 1979-2006, the relationship between persistent heavy rain events (PHREs) in the Huaihe River valley (HRV) and the distribution pattern of convective activity in the tropical western Pacific warm pool (WPWP) is investigated. Based on nine cases of PHREs in the HRV, common characteristics of the West Pacific subtropical high (WPSH) show that the northern edge of the WPSH continues to lie in the HRV and is associated with the persistent "north weak south strong" distribution pattern of convective activities in the WPWP. Composite analysis of OLR leading the circulation indicates that the response of the WPSH to OLR anomaly patterns lags by about 1-2 days. In order to explain the reason for the effects of the distribution pattern of convective activities in the WPWP on the persistent northern edge of the WPSH in the HRV, four typical persistent heavy and light rain events in the Yangtze River valley (YRV) are contrasted with the PHREs in the HRV. The comparison indicates that when the distribution pattern of the convective activities anomaly behaves in a weak (strong) manner across the whole WPWP, persistent heavy (light) rain tends to occur in the YRV. When the distribution pattern of the convective activities anomaly behaves according to the "north weak south strong" pattern in the WPWP, persistent heavy rain tends to occur in the HRV. The effects of the "north weak south strong" distribution pattern of convective activities on PHREs in the HRV are not obvious over the seasonal mean timescale, perhaps due to the non-extreme status of convective activities in the WPWP.