Measurement and comparison of NaNO3 powder concealed in opaque and semi-transparent plastic bottles are carried out through conventional Raman spectroscopy and spatially offset Raman spectroscopy individually. The act...Measurement and comparison of NaNO3 powder concealed in opaque and semi-transparent plastic bottles are carried out through conventional Raman spectroscopy and spatially offset Raman spectroscopy individually. The action mechanism why the spatially offset Raman spectroscopy can effectively detect the medium concealed in the non-transparent bottle is analyzed. The spatially offset Raman spectroscopy breaks through the detection neck of the conventional Raman spectroscopy (the detection depth is small and cannot detect the ingredient of the subsurface under non-transparent medium), and the measurement and identification of the substance concealed in the non-transparent medium (opaque/semi-transparent plastic) bottle have been realized.展开更多
文摘Measurement and comparison of NaNO3 powder concealed in opaque and semi-transparent plastic bottles are carried out through conventional Raman spectroscopy and spatially offset Raman spectroscopy individually. The action mechanism why the spatially offset Raman spectroscopy can effectively detect the medium concealed in the non-transparent bottle is analyzed. The spatially offset Raman spectroscopy breaks through the detection neck of the conventional Raman spectroscopy (the detection depth is small and cannot detect the ingredient of the subsurface under non-transparent medium), and the measurement and identification of the substance concealed in the non-transparent medium (opaque/semi-transparent plastic) bottle have been realized.