期刊文献+

反射波层析反演速度建模方法 被引量:9

Velocity model building using reflection tomography
下载PDF
导出
摘要 我国油气地震勘探目标逐渐转向小尺度(薄互层)岩性油气藏,油气地震勘探技术也逐渐向单点高密度、宽带、宽方位(“两宽一高”)地震勘探方向转变。“两宽一高”的地震数据采集为宽带波阻抗成像提供了数据基础,精确的背景(偏移)速度建模是宽带波阻抗成像必不可少的环节。在实际应用中,反射波层析反演是主要的宏观速度建模技术,典型的方法如成像道集层析或立体层析等,但它们在反演精度及计算效率方面仍存在不足之处。在数据域中,反射波时差的精确测量仍然是一个颇具挑战性的问题。为解决这一难题,从叠前地震数据的稀疏表达与特征分解出发,利用特征波场分解和包络走时定义准则,提取叠前地震数据的运动学信息,并构造了特征数据体(包含地震波的斜率、走时及子波波形)。通过分析特征波在地下的聚焦特性,提出了一种反射波残差(时差或者地下偏移距)的自动测量方法,避免了地震波振幅对反射波运动学信息拟合的影响。基于反射波残差,提出了一种特征波反射层析反演(characteristicreflectioninversion,简记为CRI)方法,通过极小化反射波时差或地下偏移距实现背景速度反演。理论分析可知:反射波时差测量方法仅适用于二维模型,而地下偏移距测量方法可以适用于二维和三维模型,因而其适用性更广。在数值计算方面,反射波残差目标泛函的梯度可以用波动理论计算,也可以用射线理论近似。出于计算效率的考虑,利用射线理论计算泛函梯度并结合梯度去噪方法,实现低波数的速度更新。数值实验表明:该方法无需长偏移距观测数据或低频信息,对初始模型依赖性低、计算效率高,且整个反演流程可以实现全自动化,可以为后续的宽波数带速度建模提供较为可靠的低波数背景速度模型。 As the target of oil exploration in China is changing toward the small-scale (thin-interbed) lithologic reservoirs,the seismic acquisition methods are being gradually upgraded to the broadband,wide-azimuth and high-density (BWH) techniques.Such new techniques permit broadband impedance imaging,which require an accurate background model (in terms of velocity,anisotropy,even Q).In exploration seismology,the macro-velocity model is often estimated using reflection tomography.Typical inversion methods,such as the Ray-based tomographic migration velocity analysis or the stereo-tomography,still suffer from low resolution and high computational costs.In the data domain,accurately measuring the difference in the reflection travel time between the observed and synthetic data remains a challenge.To address this problem,we begin with a sparse presentation and characterization of pre-stack seismic data,from which we extract kinematic information (slope,travel time,and waveform of the reflection event) using the characteristic wavefield decomposition method.Furthermore,by analyzing the focus property of a wavefield in the subsurface space,two reflection-misfit calculation strategies are proposed:the reflection travel time-residual and the subsurface-offset measurements.Consequently,the new reflection inversion method,which is referred to as the characteristic reflection inversion (CRI),is based on the minimization of reflection travel-time residuals or subsurface offsets.According to a theoretical analysis,the strategy for measuring the reflection travel time residual should be valid for any 2D media,while the subsurface offset measurement method should be valid for both 2D and 3D media.The functional gradient can be calculated either by wave-equation linearization or by the ray theory.To increase the computational efficiency,the ray theory version of the gradient is calculated,followed by a denoising method in such a way that the low-wavenumber components of the velocity model can be updated.Numerical examples demonstrate th
作者 冯波 吴成梁 王华忠 FENG Bo;WU Chengliang;WANG Huazhong(Wave Phenomena and Intelligent Inversion Imaging Group (WPI),School of Ocean and Earth Science,Tongji University,Shanghai 200092,China)
出处 《石油物探》 EI CSCD 北大核心 2019年第3期371-380,共10页 Geophysical Prospecting For Petroleum
基金 国家自然科学基金(41604091,41704111,41774126) 国家科技重大专项(2016ZX05024-001,2016ZX05006-002)共同资助~~
关键词 地震数据特征表达 特征数据空间 反射时差测量 地下偏移距 反射波反演 characterization of seismic data characteristic data space reflection traveltime residual estimation subsurface offset reflection tomography
  • 相关文献

参考文献8

二级参考文献50

  • 1Bozdag, E., Trampert, J., Tromp, J., 2011. Misfit Functions for Full Waveform Inversion Based on Instantaneous Phase and Envelope Measurements. Geophysical Journal International, 185(2): 845-870. doi: 10.1111/j. 1365-246x.2011.04970.x. 被引量:1
  • 2Clement, F., Chavent, G., Gomez, S., 2001. Migration-Based Traveltime Waveform Inversion of 2-D Simple Structures: A Synthetic Example. Geophysics, 66(3): 845-860. doi: 10.1190/1.1444974. 被引量:1
  • 3de Hoop, M. V. D., van der Hilst, R. D. V. D., 2005. On Sensi- tivity Kemels for 'Wave-Equation' Transmission Tomo- graphy. Geophysical Journal International, 160(2): 621-633. doi: 10.1111/j. 1365-246x.2004.02509.x. 被引量:1
  • 4Di Nicola-Carena, E., Shipp, R., Singh, S., 1999. Fast Traveltime Tomography and Analysis of Real Data Using a Semi-automated Picking Procedure. SEG Technical Program Expanded Abstracts 1999, 1414-1417. doi: 10.1190/1.1820781. 被引量:1
  • 5Liu, T., 2014. The Study of Diffraction Separation and Imaging: [Dissertation]. Tongji University, Shanghai (in Chinese with English Abstract). 被引量:1
  • 6Luo, S., Hale, D., 2013. Separating Traveltimes and Amplitudes in Waveform Inversion. SEG Technical Program Expanded Ab- stracts 2013, 61: 27-34. doi:10.1190/segam2013-1284.1. 被引量:1
  • 7Luo, Y., Schuster, G. T., 1991. Wave-Equation Traveltime Inversion. Geophysics, 56(5): 645~553. doi: 10.1190/1.1443081. 被引量:1
  • 8Ma, Y., Hale, D., 2013. Wave-Equation Reflection Traveltime Inversion with Dynamic Warping and Full-Waveform Inversion. Geophysics, 78(6): R223. doi: 10.1190/geo2013-0004.1. 被引量:1
  • 9Pratt, R. G., 1999. Seismic Waveform Inversion in the Fre- quency Domain, Part 1: Theory and Verification in a Physical Scale Model. Geophysics, 64(3): 888-901. doi: 10.1190/1.1444597. 被引量:1
  • 10Tarantola, A., 1984. Inversion of Seismic Reflection Data in the Acoustic Approximation. Geophysics, 49(8): 1259-1266. doi: 10.1190/1.1441754. 被引量:1

共引文献54

同被引文献167

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部