This paper is concerned with entire solutions ( t ∈ R) for bistable reaction-advection-diffusion equations in heterogeneous media. By using traveling curved fronts connecting a constant unstable stationary state and ...This paper is concerned with entire solutions ( t ∈ R) for bistable reaction-advection-diffusion equations in heterogeneous media. By using traveling curved fronts connecting a constant unstable stationary state and a stable stationary state, we proved that there exist entire solutions behaving as two traveling curved fronts coming from opposite directions, and approaching each other. Furthermore, we prove that such an entire solution is unique and Liapunov stable. The key technique is to characterize the asymptotic behavior of solutions at infinity in term of appropriate subsolutions and supersolutions.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 10871085)
文摘This paper is concerned with entire solutions ( t ∈ R) for bistable reaction-advection-diffusion equations in heterogeneous media. By using traveling curved fronts connecting a constant unstable stationary state and a stable stationary state, we proved that there exist entire solutions behaving as two traveling curved fronts coming from opposite directions, and approaching each other. Furthermore, we prove that such an entire solution is unique and Liapunov stable. The key technique is to characterize the asymptotic behavior of solutions at infinity in term of appropriate subsolutions and supersolutions.