The dynamic analysis on the ultra-large spatial structure can be simplified drastically by ignoring the flexibility and damping of the structure.However,these simplifications will result in the erroneous estimate on t...The dynamic analysis on the ultra-large spatial structure can be simplified drastically by ignoring the flexibility and damping of the structure.However,these simplifications will result in the erroneous estimate on the dynamic behaviors of the ultra-large spatial structure.Taking the spatial beam as an example,the minimum control energy defined by the difference between the initial total energy and the final total energy in the assumed stable attitude state of the beam is investigated by the structure-preserving method proposed in our previous studies in two cases:the spatial beam considering the flexibility as well as the damping effect,and the spatial beam ignoring both the flexibility and the damping effect.In the numerical experiments,the assumed simulation interval of three months is evaluated on whether or not it is long enough for the spatial flexible damping beam to arrive at the assumed stable attitude state.And then,taking the initial attitude angle and the initial attitude angle velocity as the independent variables,respectively,the minimum control energies of the mentioned two cases are investigated in detail.From the numerical results,the following conclusions can be obtained.With the fixed initial attitude angle velocity,the minimum control energy of the spatial flexible damping beam is higher than that of the spatial rigid beam when the initial attitude angle is close to or far away from the stable attitude state.With the fixed initial attitude angle,ignoring the flexibility and the damping effect will underestimate the minimum control energy of the spatial beam.展开更多
In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct effi...In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct efficient and accurate time discretization scheme for a large class of Hamiltonian partial differential equations(PDEs).The proposed scheme is a linear system,and can be solved more efficient than the original energy-preserving ex-ponential integrator scheme which usually needs nonlinear iterations.Various experiments are performed to verify the conservation,efficiency and good performance at relatively large time step in long time computations.展开更多
The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbit...The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbits. Demonstrating significantly higher efficiency, this advanced method is capable of accomplishing the simulation in less than one-third of the time of directly computing the guiding center motion. In contrast to the CPP-based Boris algorithm, this approach inherits the advantages of the AVF method, yielding stable trajectories even achieved with a tenfold time step and reducing the energy error by two orders of magnitude. By comparing these two CPP algorithms with the traditional RK4 method, the numerical results indicate a remarkable performance in terms of both the computational efficiency and error elimination. Moreover, we verify the properties of slow manifold integrators and successfully observe the bounce on both sides of the limiting slow manifold with deliberately chosen perturbed initial conditions. To evaluate the practical value of the methods, we conduct simulations in non-axisymmetric perturbation magnetic fields as part of the experiments,demonstrating that our CPP-based AVF method can handle simulations under complex magnetic field configurations with high accuracy, which the CPP-based Boris algorithm lacks. Through numerical experiments, we demonstrate that the CPP can replace guiding center dynamics in using energy-preserving algorithms for computations, providing a new, efficient, as well as stable approach for applying structure-preserving algorithms in plasma simulations.展开更多
The concept of a space solar power station(SSPS)was proposed in 1968 as a potential approach for solving the energy crisis.In the past 50 years,several structural concepts have been proposed,but none have been sent in...The concept of a space solar power station(SSPS)was proposed in 1968 as a potential approach for solving the energy crisis.In the past 50 years,several structural concepts have been proposed,but none have been sent into orbit.One of the main challenges of the SSPS is dynamic behavior prediction,which can supply the necessary information for control strategy design.The ultra-large size of the SSPS causes difficulties in its dynamic analysis,such as the ultra-low vibration frequency and large fexibility.In this paper,four approaches for the numerical analysis of the dynamic problems associated with the SSPS are reviewed:the finite element,absolute nodal coordinate,foating frame formulation,and structure-preserving methods.Both the merits and shortcomings of the above four approaches are introduced when they are employed in dynamic problems associated with the SSPS.Synthesizing the merits of the aforementioned four approaches,we believe that embedding the structure-preserving method into finite element software may be an effective way to perform a numerical analysis of the dynamic problems associated with the SSPS.展开更多
Presents a study which examined the structure-preserving algorithms to phase space volume for linear dynamical systems. Preservation of phase space volume for source-free dynamical systems; Description of a volume-pre...Presents a study which examined the structure-preserving algorithms to phase space volume for linear dynamical systems. Preservation of phase space volume for source-free dynamical systems; Description of a volume-preserving scheme for linear system with canonical form; Information on structure-preserving schemes for linear dynamical systems.展开更多
For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy,including the Willmore and the Helfrich flows,we consider a numerical approach.In this study,we construct a s...For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy,including the Willmore and the Helfrich flows,we consider a numerical approach.In this study,we construct a structure-preserving method based on a discrete variational derivative method.Furthermore,to prevent the vertex concentration that may lead to numerical instability,we discretely introduce Deckelnick’s tangential velocity.Here,a modification term is introduced in the process of adding tangential velocity.This modified term enables the method to reproduce the equations’properties while preventing vertex concentration.Numerical experiments demonstrate that the proposed approach captures the equations’properties with high accuracy and avoids the concentration of vertices.展开更多
In this paper,we propose a structure-preserving numerical scheme for the size-modified Poisson-Nernst-Planck-Cahn-Hilliard(SPNPCH)equations derived from the free energy including electrostatic energies,entropies,steri...In this paper,we propose a structure-preserving numerical scheme for the size-modified Poisson-Nernst-Planck-Cahn-Hilliard(SPNPCH)equations derived from the free energy including electrostatic energies,entropies,steric energies,and Cahn-Hilliard mixtures.Based on the Jordan-Kinderlehrer-Otto(JKO)framework and the Benamou-Brenier formula of quadratic Wasserstein distance,the SPNPCH equations are transformed into a constrained optimization problem.By exploiting the convexity of the objective function,we can prove the existence and uniqueness of the numerical solution to the optimization problem.Mass conservation and unconditional energy-dissipation are preserved automatically by this scheme.Furthermore,by making use of the singularity of the entropy term which keeps the concentration from approaching zero,we can ensure the positivity of concentration.To solve the optimization problem,we apply the quasi-Newton method,which can ensure the positivity of concentration in the iterative process.Numerical tests are performed to confirm the anticipated accuracy and the desired physical properties of the developed scheme.Finally,the proposed scheme can also be applied to study the influence of ionic sizes and gradient energy coefficients on ion distribution.展开更多
In[Dai et al.,Multi.Model.Simul.18(4)(2020)],a structure-preserving gradient flow method was proposed for the ground state calculation in Kohn-Sham density functional theory,based on which a linearized method was deve...In[Dai et al.,Multi.Model.Simul.18(4)(2020)],a structure-preserving gradient flow method was proposed for the ground state calculation in Kohn-Sham density functional theory,based on which a linearized method was developed in[Hu et al.,EAJAM.13(2)(2023)]for further improving the numerical efficiency.In this paper,a complete convergence analysis is delivered for such a linearized method for the all-electron Kohn-Sham model.Temporally,the convergence,the asymptotic stability,as well as the structure-preserving property of the linearized numerical scheme in the method is discussed following previous works,while spatially,the convergence of the h-adaptive mesh method is demonstrated following[Chen et al.,Multi.Model.Simul.12(2014)],with a key study on the boundedness of the Kohn-Sham potential for the all-electron Kohn-Sham model.Numerical examples confirm the theoretical results very well.展开更多
Irreversible drift-diffusion processes are very common in biochemical reactions.They have a non-equilibrium stationary state(invariant measure)which does not satisfy detailed balance.For the corresponding Fokker-Planc...Irreversible drift-diffusion processes are very common in biochemical reactions.They have a non-equilibrium stationary state(invariant measure)which does not satisfy detailed balance.For the corresponding Fokker-Planck equation on a closed manifold,using Voronoi tessellation,we propose two upwind finite volume schemes with or without the information of the invariant measure.Both schemes possess stochastic Q-matrix structures and can be decomposed as a gradient flow part and a Hamiltonian flow part,enabling us to prove unconditional stability,ergodicity and error estimates.Based on the two upwind schemes,several numerical examples–including sampling accelerated by a mixture flow,image transformations and simulations for stochastic model of chaotic system–are conducted.These two structurepreserving schemes also give a natural random walk approximation for a generic irreversible drift-diffusion process on a manifold.This makes them suitable for adapting to manifold-related computations that arise from high-dimensional molecular dynamics simulations.展开更多
The main objective of this paper is to present an efficient structure-preserving scheme,which is based on the idea of the scalar auxiliary variable approach,for solving the twodimensional space-fractional nonlinear Sc...The main objective of this paper is to present an efficient structure-preserving scheme,which is based on the idea of the scalar auxiliary variable approach,for solving the twodimensional space-fractional nonlinear Schrodinger equation.First,we reformulate the equation as an canonical Hamiltonian system,and obtain a new equivalent system via introducing a scalar variable.Then,we construct a semi-discrete energy-preserving scheme by using the Fourier pseudo-spectral method to discretize the equivalent system in space direction.After that,applying the Crank-Nicolson method on the temporal direction gives a linearly-implicit scheme in the fully-discrete version.As expected,the proposed scheme can preserve the energy exactly and more efficient in the sense that only decoupled equations with constant coefficients need to be solved at each time step.Finally,numerical experiments are provided to demonstrate the efficiency and conservation of the scheme.展开更多
In this paper, based on the concatenating method, we present a unified framework to construct a series of local structure-preserving algorithms for the Korteweg-de Vries (KdV) equation, including eight multi-symplec...In this paper, based on the concatenating method, we present a unified framework to construct a series of local structure-preserving algorithms for the Korteweg-de Vries (KdV) equation, including eight multi-symplectic algorithms, eight local energy-conserving algo- rithms and eight local momentum-conserving algorithms. Among these algorithms, some have been discussed and widely used while the most are new. The outstanding advantage of these proposed algorithms is that they conserve the local structures in any time-space re- gion exactly. Therefore, the local structure-preserving algorithms overcome the restriction of global structure-preserving algorithms on the boundary conditions. Numerical experiments are conducted to show the performance of the proposed methods. Moreover, the unified framework can be easily applied to many other equations.展开更多
基金The research is supported by the National Natural Science Foundation of China(11672241,11972284,11432010)Fund for Distinguished Young Scholars of Shaanxi Province(2019JC-29)Fund of the Youth Innovation Team of Shaanxi Universities,the Seed Foundation of Qian Xuesen Laboratory of Space Technology,and the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment(GZ1605).
文摘The dynamic analysis on the ultra-large spatial structure can be simplified drastically by ignoring the flexibility and damping of the structure.However,these simplifications will result in the erroneous estimate on the dynamic behaviors of the ultra-large spatial structure.Taking the spatial beam as an example,the minimum control energy defined by the difference between the initial total energy and the final total energy in the assumed stable attitude state of the beam is investigated by the structure-preserving method proposed in our previous studies in two cases:the spatial beam considering the flexibility as well as the damping effect,and the spatial beam ignoring both the flexibility and the damping effect.In the numerical experiments,the assumed simulation interval of three months is evaluated on whether or not it is long enough for the spatial flexible damping beam to arrive at the assumed stable attitude state.And then,taking the initial attitude angle and the initial attitude angle velocity as the independent variables,respectively,the minimum control energies of the mentioned two cases are investigated in detail.From the numerical results,the following conclusions can be obtained.With the fixed initial attitude angle velocity,the minimum control energy of the spatial flexible damping beam is higher than that of the spatial rigid beam when the initial attitude angle is close to or far away from the stable attitude state.With the fixed initial attitude angle,ignoring the flexibility and the damping effect will underestimate the minimum control energy of the spatial beam.
基金supported by the National Natural Science Foundation of China(Grant Nos.12171245,11971416,11971242,12301508)by the Natural Science Foundation of Henan Province(Grant No.222300420280)+1 种基金by the Natural Science Foundation of Hunan Province(Grant No.2023JJ40656)by the Scientific Research Fund of Xuchang University(Grant No.2024ZD010).
文摘In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct efficient and accurate time discretization scheme for a large class of Hamiltonian partial differential equations(PDEs).The proposed scheme is a linear system,and can be solved more efficient than the original energy-preserving ex-ponential integrator scheme which usually needs nonlinear iterations.Various experiments are performed to verify the conservation,efficiency and good performance at relatively large time step in long time computations.
基金supported by National Natural Science Foundation of China (Nos. 11975068 and 11925501)the National Key R&D Program of China (No. 2022YFE03090000)the Fundamental Research Funds for the Central Universities (No. DUT22ZD215)。
文摘The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbits. Demonstrating significantly higher efficiency, this advanced method is capable of accomplishing the simulation in less than one-third of the time of directly computing the guiding center motion. In contrast to the CPP-based Boris algorithm, this approach inherits the advantages of the AVF method, yielding stable trajectories even achieved with a tenfold time step and reducing the energy error by two orders of magnitude. By comparing these two CPP algorithms with the traditional RK4 method, the numerical results indicate a remarkable performance in terms of both the computational efficiency and error elimination. Moreover, we verify the properties of slow manifold integrators and successfully observe the bounce on both sides of the limiting slow manifold with deliberately chosen perturbed initial conditions. To evaluate the practical value of the methods, we conduct simulations in non-axisymmetric perturbation magnetic fields as part of the experiments,demonstrating that our CPP-based AVF method can handle simulations under complex magnetic field configurations with high accuracy, which the CPP-based Boris algorithm lacks. Through numerical experiments, we demonstrate that the CPP can replace guiding center dynamics in using energy-preserving algorithms for computations, providing a new, efficient, as well as stable approach for applying structure-preserving algorithms in plasma simulations.
基金supported by the National Natural Science Foundation of China(12172281,11972284,11672241,11432010,and 11872303)Fund for Distinguished Young Scholars of Shaanxi Province(2019JC-29)+2 种基金Foundation Strengthening Program Technical Area Fund(2021-JCJQ-JJ-0565)Fund of the Science and Technology Innovation Team of Shaanxi(2022TD-61)Fund of the Youth Innovation Team of Shaanxi Universities.
文摘The concept of a space solar power station(SSPS)was proposed in 1968 as a potential approach for solving the energy crisis.In the past 50 years,several structural concepts have been proposed,but none have been sent into orbit.One of the main challenges of the SSPS is dynamic behavior prediction,which can supply the necessary information for control strategy design.The ultra-large size of the SSPS causes difficulties in its dynamic analysis,such as the ultra-low vibration frequency and large fexibility.In this paper,four approaches for the numerical analysis of the dynamic problems associated with the SSPS are reviewed:the finite element,absolute nodal coordinate,foating frame formulation,and structure-preserving methods.Both the merits and shortcomings of the above four approaches are introduced when they are employed in dynamic problems associated with the SSPS.Synthesizing the merits of the aforementioned four approaches,we believe that embedding the structure-preserving method into finite element software may be an effective way to perform a numerical analysis of the dynamic problems associated with the SSPS.
文摘Presents a study which examined the structure-preserving algorithms to phase space volume for linear dynamical systems. Preservation of phase space volume for source-free dynamical systems; Description of a volume-preserving scheme for linear system with canonical form; Information on structure-preserving schemes for linear dynamical systems.
基金This work was supported by JSPS KAKENHI Grant Nos.19K14590,21K18301,Japan.
文摘For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy,including the Willmore and the Helfrich flows,we consider a numerical approach.In this study,we construct a structure-preserving method based on a discrete variational derivative method.Furthermore,to prevent the vertex concentration that may lead to numerical instability,we discretely introduce Deckelnick’s tangential velocity.Here,a modification term is introduced in the process of adding tangential velocity.This modified term enables the method to reproduce the equations’properties while preventing vertex concentration.Numerical experiments demonstrate that the proposed approach captures the equations’properties with high accuracy and avoids the concentration of vertices.
基金J.Ding was supported by the Natural Science Foundation of Jiangsu Province(Grant BK20210443)by the National Natural Science Foundation of China(Grant 12101264)by the Shuangchuang program of Jiangsu Province(Grant 1142024031211190)。
文摘In this paper,we propose a structure-preserving numerical scheme for the size-modified Poisson-Nernst-Planck-Cahn-Hilliard(SPNPCH)equations derived from the free energy including electrostatic energies,entropies,steric energies,and Cahn-Hilliard mixtures.Based on the Jordan-Kinderlehrer-Otto(JKO)framework and the Benamou-Brenier formula of quadratic Wasserstein distance,the SPNPCH equations are transformed into a constrained optimization problem.By exploiting the convexity of the objective function,we can prove the existence and uniqueness of the numerical solution to the optimization problem.Mass conservation and unconditional energy-dissipation are preserved automatically by this scheme.Furthermore,by making use of the singularity of the entropy term which keeps the concentration from approaching zero,we can ensure the positivity of concentration.To solve the optimization problem,we apply the quasi-Newton method,which can ensure the positivity of concentration in the iterative process.Numerical tests are performed to confirm the anticipated accuracy and the desired physical properties of the developed scheme.Finally,the proposed scheme can also be applied to study the influence of ionic sizes and gradient energy coefficients on ion distribution.
基金partially funded by the Hunan National Applied Mathematics Center of Hunan Provincial Science and Technology Department(Grant No.2020ZYT003)by the RSF-NSFC Cooperation project(Grant No.12261131501)+4 种基金by the Excellent youth project of the Hunan Education Department(Grant No.19B543)partially supported by the National Natural Science Foundation of China(Grant Nos.11922120 and 11871489)by the FDCT of Macao SAR(Grant No.0082/2020/A2)by the MYRG of the University of Macao(Grant No.MYRG2020-00265-FST)by the Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications(Grant No.2020B1212030001).
文摘In[Dai et al.,Multi.Model.Simul.18(4)(2020)],a structure-preserving gradient flow method was proposed for the ground state calculation in Kohn-Sham density functional theory,based on which a linearized method was developed in[Hu et al.,EAJAM.13(2)(2023)]for further improving the numerical efficiency.In this paper,a complete convergence analysis is delivered for such a linearized method for the all-electron Kohn-Sham model.Temporally,the convergence,the asymptotic stability,as well as the structure-preserving property of the linearized numerical scheme in the method is discussed following previous works,while spatially,the convergence of the h-adaptive mesh method is demonstrated following[Chen et al.,Multi.Model.Simul.12(2014)],with a key study on the boundedness of the Kohn-Sham potential for the all-electron Kohn-Sham model.Numerical examples confirm the theoretical results very well.
基金Jian-Guo Liu was supported in part by NSF under awards DMS-2106988by NSF RTG grant DMS-2038056Yuan Gao was supported by NSF under awards DMS-2204288.
文摘Irreversible drift-diffusion processes are very common in biochemical reactions.They have a non-equilibrium stationary state(invariant measure)which does not satisfy detailed balance.For the corresponding Fokker-Planck equation on a closed manifold,using Voronoi tessellation,we propose two upwind finite volume schemes with or without the information of the invariant measure.Both schemes possess stochastic Q-matrix structures and can be decomposed as a gradient flow part and a Hamiltonian flow part,enabling us to prove unconditional stability,ergodicity and error estimates.Based on the two upwind schemes,several numerical examples–including sampling accelerated by a mixture flow,image transformations and simulations for stochastic model of chaotic system–are conducted.These two structurepreserving schemes also give a natural random walk approximation for a generic irreversible drift-diffusion process on a manifold.This makes them suitable for adapting to manifold-related computations that arise from high-dimensional molecular dynamics simulations.
基金supported by the National Natural Science Foundation of China(Grant Nos.12171245,11971416,11971242)the Natural Science Foundation of Henan Province(No.222300420280)the Program for Scientific and Technological Innovation Talents in Universities of Henan Province(No.22HASTIT018).
文摘The main objective of this paper is to present an efficient structure-preserving scheme,which is based on the idea of the scalar auxiliary variable approach,for solving the twodimensional space-fractional nonlinear Schrodinger equation.First,we reformulate the equation as an canonical Hamiltonian system,and obtain a new equivalent system via introducing a scalar variable.Then,we construct a semi-discrete energy-preserving scheme by using the Fourier pseudo-spectral method to discretize the equivalent system in space direction.After that,applying the Crank-Nicolson method on the temporal direction gives a linearly-implicit scheme in the fully-discrete version.As expected,the proposed scheme can preserve the energy exactly and more efficient in the sense that only decoupled equations with constant coefficients need to be solved at each time step.Finally,numerical experiments are provided to demonstrate the efficiency and conservation of the scheme.
文摘In this paper, based on the concatenating method, we present a unified framework to construct a series of local structure-preserving algorithms for the Korteweg-de Vries (KdV) equation, including eight multi-symplectic algorithms, eight local energy-conserving algo- rithms and eight local momentum-conserving algorithms. Among these algorithms, some have been discussed and widely used while the most are new. The outstanding advantage of these proposed algorithms is that they conserve the local structures in any time-space re- gion exactly. Therefore, the local structure-preserving algorithms overcome the restriction of global structure-preserving algorithms on the boundary conditions. Numerical experiments are conducted to show the performance of the proposed methods. Moreover, the unified framework can be easily applied to many other equations.