期刊文献+

融合缺失点云形状信息的保结构修复网络

A Structure-Preserving Point Completion Network by Incorporating Incomplete 3D Shapes
下载PDF
导出
摘要 传统点云模型修复中由于未考虑输入的缺失点云形状固有特征,难以有效地保持原始形状结构特征信息.为此,提出一种融合缺失点云形状信息的保结构修复网络.该网络采用编码器-解码器结构,借助多层感知器和最大池化层以获得输入点云形状的特征码字.其中,编码器以缺失的点云数据作为输入;解码器则对编码得到的点云特征码字使用4个2D网格进行折叠操作以拟合点云形状得到粗修复结果,再将输入点云数据与粗修复结果进行拼接融合,并对融合后的点云数据经过迭代最远点采样得到最终的点云形状修复结果.实验结果表明,与已有网络修复结果相比,该网络在ModelNet40数据集上的平均误差低11%~53%,在ShapeNet数据集上的平均误差低15%~28%,而对具有精细结构的物体修复结果的平均误差低59%~70%.该网络在修复点云形状缺失部分的同时,能够有效地保持输入形状的结构特征信息,对不同程度的数据缺失具有鲁棒性;与已有网络相比,该网络点云修复结果的误差较小、点云分布较均匀. For the task of point cloud completion,it is always difficult to maintain the original shape structures effectively due to its missing of inherent features of the input point cloud.To this end,a structure-preserving point completion network is proposed that can incorporate the input incomplete point cloud.The proposed network adopts an encoder-decoder structure,and the encoder uses a multi-layer perception and a maximum pooling layer to obtain its feature codeword of the input 3D shape.The generated feature codeword can thus be performed a folding operation using four 2D grids to obtain a rough repairing result,which can be fused with the input point cloud.The final completed point cloud can be obtained by the iterative farthest point sampling(IFPS)operation.Compared with the completion results on ModelNet40 dataset,the average distance error of our proposed network is 11%‒53%lower than that of the existing completion networks,whilst the average error of our network will be 15%‒28%lower than that of the existing methods on ShapeNet dataset,and 59%‒70%lower than that of the existing methods for point cloud shapes with fine structures.Experimental results demonstrate that our completion network can maintain the structural features of the input shapes effectively while repairing the missing parts of the underlying point clouds and is robust to different degrees of data loss.Compared with the existing networks,our completion network always has smaller distance error and uniform distribution of sampling points.
作者 张磊 缪永伟 景程宇 孙树森 Zhang Lei;Miao Yongwei;Jing Chengyu;Sun Shusen(School of Computer Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018;School of Information Science and Technology,Hangzhou Normal University,Hangzhou 311121)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第5期696-707,共12页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61972458) 浙江省自然科学基金(LZ23F020002)。
关键词 点云模型 保结构 修复补全 端对端 编码器-解码器 point cloud structure-preserving shape completion end-to-end encoder-decoder
  • 相关文献

参考文献1

  • 1缪永伟,肖春霞著..三维点采样模型的几何处理和形状造型[M].北京:科学出版社,2014:212.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部