From the viewpoint of welding mechanics, two new welding methods-welding with trailing peening and welding with trailing impactive rolling were introduced. For aluminum alloy thin-shell structures with high strength, ...From the viewpoint of welding mechanics, two new welding methods-welding with trailing peening and welding with trailing impactive rolling were introduced. For aluminum alloy thin-shell structures with high strength, welding will lead to hot cracking, poor joint and distortion. In order to solve them, trailing impactive device was used behind welding torch to impact the different positions of welded joints, thus realizing the welding with free-hot cracking, low distortion and joint strengthening. By use of impactive rolling wheels instead of peening heads, the outlook of welded specimen can be improved and stress concentration at weld toes can be reduced. Equipment of this technology is simple and portable. It can used to weld sheets, longitudinal and ring-like beams of tube-like structures, as well as the thin-shell structures with closed welds such as flanges and hatches. So the technology has the wide application foreground in the fields of aviation and aerospace.展开更多
Using experimental mechanics method of moiré analysis, strain field distributions of 2024 aluminum alloy welded joints under different conditions were investigated. The results show that moiré stripes of wel...Using experimental mechanics method of moiré analysis, strain field distributions of 2024 aluminum alloy welded joints under different conditions were investigated. The results show that moiré stripes of welded joint without trailing peening just before fracture are not only few and scattered but also uneven, and the stress mainly concentrates on the poor position welded toes during the tensioning process with the relatively poor mechanical properties of welded joints; When the method of welding with trailing peening is adopted, moiré stripes of welded joint just before fracture are relatively thick and even due to the strengthening welded toes during the welding process, and fracture position transfers from the welded toes to weld, at the same time the mechanical properties of welded joints are improved greatly than conventional welding which can show that the technology of trailing peening is effective to strengthen welded joints of aluminum alloy with high strength.展开更多
A novel ultrasonic-assisted low-temperature soldering was developed to join AZ31B Mg alloy and 6061 Al alloy with a series of Sn–x Zn solders. The average maximum shear strength of the joints reaches up to 87.5 MPa a...A novel ultrasonic-assisted low-temperature soldering was developed to join AZ31B Mg alloy and 6061 Al alloy with a series of Sn–x Zn solders. The average maximum shear strength of the joints reaches up to 87.5 MPa at soldering temperature of 300 °C under ultrasonic assistance for only 5 s using Sn–20 Zn solder. The fracture path propagates completely in the soldering seam. The results indicate that the microjet generated by ultrasonic pressure in liquid solder could strike and splinter the Mg_2Sn intermetallic compounds into small pieces, which contributes to the enhancement of the joint strength. In addition, the primary Al(Zn) solid solution phase formed during cooling stage could also strengthen the joint due to the prevention of microcracks propagation.展开更多
文摘From the viewpoint of welding mechanics, two new welding methods-welding with trailing peening and welding with trailing impactive rolling were introduced. For aluminum alloy thin-shell structures with high strength, welding will lead to hot cracking, poor joint and distortion. In order to solve them, trailing impactive device was used behind welding torch to impact the different positions of welded joints, thus realizing the welding with free-hot cracking, low distortion and joint strengthening. By use of impactive rolling wheels instead of peening heads, the outlook of welded specimen can be improved and stress concentration at weld toes can be reduced. Equipment of this technology is simple and portable. It can used to weld sheets, longitudinal and ring-like beams of tube-like structures, as well as the thin-shell structures with closed welds such as flanges and hatches. So the technology has the wide application foreground in the fields of aviation and aerospace.
文摘Using experimental mechanics method of moiré analysis, strain field distributions of 2024 aluminum alloy welded joints under different conditions were investigated. The results show that moiré stripes of welded joint without trailing peening just before fracture are not only few and scattered but also uneven, and the stress mainly concentrates on the poor position welded toes during the tensioning process with the relatively poor mechanical properties of welded joints; When the method of welding with trailing peening is adopted, moiré stripes of welded joint just before fracture are relatively thick and even due to the strengthening welded toes during the welding process, and fracture position transfers from the welded toes to weld, at the same time the mechanical properties of welded joints are improved greatly than conventional welding which can show that the technology of trailing peening is effective to strengthen welded joints of aluminum alloy with high strength.
基金supported financially by the State Key Laboratory of Advanced Brazing Filler Metals & Technology (No. SKLABFMT-2016-02)the CAST Innovation Fund Key Project and the National Natural Science Foundation of China (Nos. 51775299 and 51520105007)
文摘A novel ultrasonic-assisted low-temperature soldering was developed to join AZ31B Mg alloy and 6061 Al alloy with a series of Sn–x Zn solders. The average maximum shear strength of the joints reaches up to 87.5 MPa at soldering temperature of 300 °C under ultrasonic assistance for only 5 s using Sn–20 Zn solder. The fracture path propagates completely in the soldering seam. The results indicate that the microjet generated by ultrasonic pressure in liquid solder could strike and splinter the Mg_2Sn intermetallic compounds into small pieces, which contributes to the enhancement of the joint strength. In addition, the primary Al(Zn) solid solution phase formed during cooling stage could also strengthen the joint due to the prevention of microcracks propagation.