The directional solidification process of turbine blade sample castings was investigated in the work. Variable withdrawal rates were used in one withdrawal process and compared with the other using uniform rate. A mat...The directional solidification process of turbine blade sample castings was investigated in the work. Variable withdrawal rates were used in one withdrawal process and compared with the other using uniform rate. A mathematical model for heat radiation transfer and microstructure simulation of directional solidification process was developed based on CA-FD method. The temperature distribution and microstructure w.ere simulated and compared with the experimental results. The stray grains were predicted and compared with the experimental results. The uneven temperature distribution of platform was the main reason of the formation of stray grains.展开更多
The developed model was validated by the checking of grain preferential growth orientation and the solidification experiment with low melting point alloy of Sn-21%Bi(mole fraction). It was also applied to predict the ...The developed model was validated by the checking of grain preferential growth orientation and the solidification experiment with low melting point alloy of Sn-21%Bi(mole fraction). It was also applied to predict the structure defects (e.g. stray grain) of unidirectionally solidified turbine blade. The results show that the developed model is reliable and has the following abilities: 1) reduce the misorientation caused by the orthogonal mesh used in simulation; 2) well reproduce the growth competition among the different-preferential-direction grains with less than 10% relative error; 3) predict the structure defect of stray grain with the accuracy over 80%; 4) optimize the grain selector to better obtain a single crystal avoiding the multigrain defect; 5) simulate the structure evolution (nucleation and growth) of the directional and single crystal turbine blade.展开更多
The structure defects such as stray grains during unidirectional solidification can severely reduce the performance of single crystal turbine blades. A dendrite envelope tracking model is developed for predicting the ...The structure defects such as stray grains during unidirectional solidification can severely reduce the performance of single crystal turbine blades. A dendrite envelope tracking model is developed for predicting the structure defects of unidirectional solidification turbine blade. The normal vector of dendrite envelope is estimated by the gradient of dendrite volume fraction, and the growth velocity of the dendrite envelope (dendrite tips) is calculated with considering the anisotropy of grain growth. The solute redistribution at dendrite envelope is calculated by introducing an effective solute partition coefficient. Simulation tests show that the solute-build-up due to the rejection at envelope greatly affects grain competition and consequently solidification structure. The model is applied to predict the structure defects (e.g. stray grain) of single crystal turbine blade during unidirectional solidification. The results show that the developed model is reliable and has the following abilities: reproduce the growth competition among the different-preferential-direction grains; predict the stray grain formation; simulate the structure evolution (single crystal or dendrite grains).展开更多
文摘The directional solidification process of turbine blade sample castings was investigated in the work. Variable withdrawal rates were used in one withdrawal process and compared with the other using uniform rate. A mathematical model for heat radiation transfer and microstructure simulation of directional solidification process was developed based on CA-FD method. The temperature distribution and microstructure w.ere simulated and compared with the experimental results. The stray grains were predicted and compared with the experimental results. The uneven temperature distribution of platform was the main reason of the formation of stray grains.
基金Project(ICAST 11305054) supported by the NEDO of Japan Project(20052176) supported by the Natural Science Foundation of Liaoning Province, China Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘The developed model was validated by the checking of grain preferential growth orientation and the solidification experiment with low melting point alloy of Sn-21%Bi(mole fraction). It was also applied to predict the structure defects (e.g. stray grain) of unidirectionally solidified turbine blade. The results show that the developed model is reliable and has the following abilities: 1) reduce the misorientation caused by the orthogonal mesh used in simulation; 2) well reproduce the growth competition among the different-preferential-direction grains with less than 10% relative error; 3) predict the structure defect of stray grain with the accuracy over 80%; 4) optimize the grain selector to better obtain a single crystal avoiding the multigrain defect; 5) simulate the structure evolution (nucleation and growth) of the directional and single crystal turbine blade.
基金Project(ICAST No.11305054) supported by the NEDO of Japan Subproject (5133301ZT4) supported by 973 Program Project (20052176) supported by the Natural Science Foundation of Liaoning Province, China
文摘The structure defects such as stray grains during unidirectional solidification can severely reduce the performance of single crystal turbine blades. A dendrite envelope tracking model is developed for predicting the structure defects of unidirectional solidification turbine blade. The normal vector of dendrite envelope is estimated by the gradient of dendrite volume fraction, and the growth velocity of the dendrite envelope (dendrite tips) is calculated with considering the anisotropy of grain growth. The solute redistribution at dendrite envelope is calculated by introducing an effective solute partition coefficient. Simulation tests show that the solute-build-up due to the rejection at envelope greatly affects grain competition and consequently solidification structure. The model is applied to predict the structure defects (e.g. stray grain) of single crystal turbine blade during unidirectional solidification. The results show that the developed model is reliable and has the following abilities: reproduce the growth competition among the different-preferential-direction grains; predict the stray grain formation; simulate the structure evolution (single crystal or dendrite grains).