Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditi...Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.展开更多
The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conducti...The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conduction. The first equation of an elliptic type is defined with respect to the electric potential, the successive two equations of convection dominated diffusion type are given to define the electron concentration and the hole concentration, and the fourth equation of heat conductor is for the temperature. The electric potential appears in the equations of electron concentration, hole concentration and the temperature in the formation of the intensity. A mass conservative numerical approximation of the electric potential is presented by using the mixed finite volume element, and the accuracy of computation of the electric intensity is improved one order. The method of characteristic fractional step difference is applied to discretize the other three equations, where the hyperbolic terms are approximated by a difference quotient in the characteristics and the diffusion terms are discretized by the method of fractional step difference. The computation of three-dimensional problem works efficiently by dividing it into three one-dimensional subproblems and every subproblem is solved by the method of speedup in parallel. Using a pair of different grids (coarse partition and refined partition), piecewise threefold quadratic interpolation, variation theory, multiplicative commutation rule of differential operators, mathematical induction and priori estimates theory and special technique of differential equations, we derive an optimal second order estimate in L2-norm. This numerical method is valuable in the simulation of semiconductor device theoretically and actually, and gives a powerful tool to solve the international problem presented by J. Douglas, Jr.展开更多
基金supported by National Natural Science Foundation of China(11101244,11271231)National Tackling Key Problems Program(20050200069)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
基金supported by the National Natural Science Foundation of China(Grant Nos.11101124 and 11271231)the National Tackling Key Problems Program for Science and Technology(Grant No.20050200069)the Doctorate Foundation of the Ministry of Education of China(Grant No.20030422047)
文摘The mathematical system is formulated by four partial differential equations combined with initial- boundary value conditions to describe transient behavior of three-dimensional semiconductor device with heat conduction. The first equation of an elliptic type is defined with respect to the electric potential, the successive two equations of convection dominated diffusion type are given to define the electron concentration and the hole concentration, and the fourth equation of heat conductor is for the temperature. The electric potential appears in the equations of electron concentration, hole concentration and the temperature in the formation of the intensity. A mass conservative numerical approximation of the electric potential is presented by using the mixed finite volume element, and the accuracy of computation of the electric intensity is improved one order. The method of characteristic fractional step difference is applied to discretize the other three equations, where the hyperbolic terms are approximated by a difference quotient in the characteristics and the diffusion terms are discretized by the method of fractional step difference. The computation of three-dimensional problem works efficiently by dividing it into three one-dimensional subproblems and every subproblem is solved by the method of speedup in parallel. Using a pair of different grids (coarse partition and refined partition), piecewise threefold quadratic interpolation, variation theory, multiplicative commutation rule of differential operators, mathematical induction and priori estimates theory and special technique of differential equations, we derive an optimal second order estimate in L2-norm. This numerical method is valuable in the simulation of semiconductor device theoretically and actually, and gives a powerful tool to solve the international problem presented by J. Douglas, Jr.