This study examined the effect of different salinities(0, 5, 10, 15, 20, 25 and 30) on the growth performance and energy budget of juveniles of two different ecotypes of Oncorhynchus mykiss, landlocked rainbow trout a...This study examined the effect of different salinities(0, 5, 10, 15, 20, 25 and 30) on the growth performance and energy budget of juveniles of two different ecotypes of Oncorhynchus mykiss, landlocked rainbow trout and anadromous steelhead trout. In the 42 d experiment, fish were cultured in three replicate tanks per salinity treatment(eight fish per tank). At the end of the experiment, the growth of rainbow and steelhead trouts was significantly higher at salinities of 5 and 10, respectively, than at all other salinities. The protein, lipid and energy content of both ecotypes declined with the increase of salinity. Based on their energy budgets, the percentage of energy consumed for growth by rainbow and steelhead trouts were significantly higher at salinities of 5(34.00% ±1.69%) and 10(43.76% ± 1.29%), respectively, than at all other salinities. The percentage of energy consumed for respiration by rainbow and steelhead trouts was lower at salinities of 5(54.90% ± 1.77%) and 10(46.73% ± 0.62%), respectively, than at all other salinities. Our results indicated that the salinity adaptation ability of juvenile steelhead trout was slightly better than that of juvenile rainbow trout, and salinities of 10 and 5, respectively, were most suitable for growth of these two fishes.展开更多
In this study, the changes of the fatty acid composition of phospholipid in different tissues(muscle, heart, brain and spleen) of steelhead trout(Oncorhynchus mykiss) were analyzed when the water temperature decreased...In this study, the changes of the fatty acid composition of phospholipid in different tissues(muscle, heart, brain and spleen) of steelhead trout(Oncorhynchus mykiss) were analyzed when the water temperature decreased gradually from 16 to 12℃℃, 8℃, 6℃, 4℃, 2 and 1℃℃. Three fish individuals each tank(average weight 70.32 g ± 9.12 g) were collected and used to analysis at each designed temperatures. At normal temperature(16℃), the fatty acid composition of phospholipid of muscle and heart was similar each other. The highest concentration of saturate fatty acids(SFA) was found in the phospholipid of spleen. The brain phospholipid contained higher oleic acid(18:1 n9) than the phospholipid of other tissues at 16℃. When the environmental temperature decreased, the concentration of unsaturated fatty acids of phospholipids in all tissues increased, and accordingly the ratio pf the unsaturated to saturated fatty acids(U/S) and unsaturation index(UI) increased, indicating that steelhead trout can compensate temperature-dependent changes in membrane fluidity by remodeling the fatty acid composition of phospholipids. The changes in the fatty acid composition of phospholipid were tissue-specific. At the early stages of the experiment(16 to 8℃℃), the fatty acid composition of phospholipid changed remarkably in muscle, heart, and spleen. When temperature decreased to less than 8℃, an obvious response of phospholipid fatty acid was observed in all tissues. The change of phospholipid composition of steelhead trout tissues may be affected by both cold stress and starvation when the temperature decreased to 2℃, and the change of phospholipid composition of muscle was very obvious.展开更多
基金jointly funded by the National Natural Science Foundation of China (Nos. 31702364 and 3157 2634)the Primary Research and Development Program of Shandong Province (Nos. 2016CYJS04A01 and 2017CXGC0106)
文摘This study examined the effect of different salinities(0, 5, 10, 15, 20, 25 and 30) on the growth performance and energy budget of juveniles of two different ecotypes of Oncorhynchus mykiss, landlocked rainbow trout and anadromous steelhead trout. In the 42 d experiment, fish were cultured in three replicate tanks per salinity treatment(eight fish per tank). At the end of the experiment, the growth of rainbow and steelhead trouts was significantly higher at salinities of 5 and 10, respectively, than at all other salinities. The protein, lipid and energy content of both ecotypes declined with the increase of salinity. Based on their energy budgets, the percentage of energy consumed for growth by rainbow and steelhead trouts were significantly higher at salinities of 5(34.00% ±1.69%) and 10(43.76% ± 1.29%), respectively, than at all other salinities. The percentage of energy consumed for respiration by rainbow and steelhead trouts was lower at salinities of 5(54.90% ± 1.77%) and 10(46.73% ± 0.62%), respectively, than at all other salinities. Our results indicated that the salinity adaptation ability of juvenile steelhead trout was slightly better than that of juvenile rainbow trout, and salinities of 10 and 5, respectively, were most suitable for growth of these two fishes.
基金jointly funded by the National Natural Science Foundation of China (Nos. 31572634 and 31702364)the Fundamental Research Funds for the Central Universities of China (No. 20161205)+1 种基金the Key Research and Development Program of Shandong Province (Nos. 2016CYJS04A01 and 2017CXGC0106)Science and Technology Planning Project of Guangdong Province, China (No. 2017B030314052)
文摘In this study, the changes of the fatty acid composition of phospholipid in different tissues(muscle, heart, brain and spleen) of steelhead trout(Oncorhynchus mykiss) were analyzed when the water temperature decreased gradually from 16 to 12℃℃, 8℃, 6℃, 4℃, 2 and 1℃℃. Three fish individuals each tank(average weight 70.32 g ± 9.12 g) were collected and used to analysis at each designed temperatures. At normal temperature(16℃), the fatty acid composition of phospholipid of muscle and heart was similar each other. The highest concentration of saturate fatty acids(SFA) was found in the phospholipid of spleen. The brain phospholipid contained higher oleic acid(18:1 n9) than the phospholipid of other tissues at 16℃. When the environmental temperature decreased, the concentration of unsaturated fatty acids of phospholipids in all tissues increased, and accordingly the ratio pf the unsaturated to saturated fatty acids(U/S) and unsaturation index(UI) increased, indicating that steelhead trout can compensate temperature-dependent changes in membrane fluidity by remodeling the fatty acid composition of phospholipids. The changes in the fatty acid composition of phospholipid were tissue-specific. At the early stages of the experiment(16 to 8℃℃), the fatty acid composition of phospholipid changed remarkably in muscle, heart, and spleen. When temperature decreased to less than 8℃, an obvious response of phospholipid fatty acid was observed in all tissues. The change of phospholipid composition of steelhead trout tissues may be affected by both cold stress and starvation when the temperature decreased to 2℃, and the change of phospholipid composition of muscle was very obvious.