We present a period analysis of the near-contact binary CN And using all available times of light minima. It is revealed that the orbital period exhibits a long-term decrease as well as a small-amplitude cyclic oscill...We present a period analysis of the near-contact binary CN And using all available times of light minima. It is revealed that the orbital period exhibits a long-term decrease as well as a small-amplitude cyclic oscillation. This result suggests that the secular period decrease at the rate of d P/dt =-1.4017 ×10-7 d yr-1 is caused by a combination of mass transfer and angular momentum loss due to magnetic braking. The periodic variation with an amplitude of A = 0.0036 d and a period of Pmod = 28.3542 yr should be rooted in the light-time effect of a third body, rather than cyclic magnetic activity.展开更多
The lander of China’s Chang’E-3 spacecraft is equipped with a 15-cm telescope that is very useful for monitoring celestial objects in the ultraviolet(UV) band(245–340 nm).The Lunar-based Ultraviolet Telescope(LUT) ...The lander of China’s Chang’E-3 spacecraft is equipped with a 15-cm telescope that is very useful for monitoring celestial objects in the ultraviolet(UV) band(245–340 nm).The Lunar-based Ultraviolet Telescope(LUT) is the first long-term lunar-based astronomical observatory,that can make uninterrupted observations of a target from the Moon.Here we present the continuous complete UV light curve of the eclipsing binary TX Herculis(TX Her).The analysis of the light curve suggests that TX Her is a detached binary.The dip in the light curve was explained by the emergence of a stellar dark spot on the less massive F0 type component.The cyclic change of arrival eclipse times for the system reveals that it contains an additional stellar companion with a minimal mass of 0.35 M⊙ and a period of 48.92 yr,which is supported by the detected light contribution of the third body from light curve analysis.This third body may play an important role in the formation of the present short-period system TX Her.展开更多
New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn...New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn and V354 UMa are asymmetric.Therefore,a hot spot was added on the primary star of FP Lyn and a dark spot was added on the secondary star of V354 UMa.At the same time,we added a third light to the photometric solution of FP Lyn for the final result.The obtained mass ratios and fill-out factors are q = 1.153 and f = 13.4% for FP Lyn,q = 1.075 and f = 4.6% for FV CVn,and q = 3.623 and f = 10.7% for V354 UMa respectively.The investigations of orbital period for these three systems indicate that the periods are variable.FP Lyn and V354 UMa were discovered to have secularly increasing components with rates of dp/dt = 4.19 ×10^-7 dyr^-1 and dp/dt = 7.70 ×10^-7 dyr^-1 respectively,which are feasibly caused by conservative mass transfer from the less massive component to the more massive component.In addition,some variable components were discovered for FV CVn,including a rate of dp/dt =-1.13 ×10^-6 dyr^-1 accompanied by a cyclic oscillation with amplitude and period of 0.0069 d and 10.65 yr respectively.The most likely explanation for the long-term decrease is angular momentum loss.The existence of an additional star is the most plausible explanation for the periodic variation.展开更多
TZ Eri and TU Her are both classic Algol-type systems(Algols). By observing and collecting times of minimum light, we constructed the O-C curves for the two systems. The long-time upward and downward parabolas shown i...TZ Eri and TU Her are both classic Algol-type systems(Algols). By observing and collecting times of minimum light, we constructed the O-C curves for the two systems. The long-time upward and downward parabolas shown in these diagrams are considered to be the result of the combination of mass transfer and angular momentum loss. The secular orbital period change rates are d P/dt = 4.74(±0.12) ×10-7 d yr-1 and d P/dt =-2.33(±0.01) × 10-6 d yr-1, respectively. There are also cyclic variations in their O-C curves which might be caused by the light-travel time effect(LTTE). A circumbinary star may exist in the TZ Eri system with a mass of at least 1.34 M⊙, while there are possibly two celestial bodies that almost follow a 2 : 1 resonance orbit around the TU Her binary pair. Their masses are at least 2.43 M⊙and 1.27 M⊙.展开更多
We utilize the PAdova and TRieste Stellar Evolution Code(PARSEC) combined with photometric observations to determine a guaranteed mass of AL Cas and re-examine its related physical parameters.Multicolor-photometric ob...We utilize the PAdova and TRieste Stellar Evolution Code(PARSEC) combined with photometric observations to determine a guaranteed mass of AL Cas and re-examine its related physical parameters.Multicolor-photometric observations of AL Cas have been performed in 2016 and 2017. We use the WilsonDevinney(W-D) code to analyze the light curves and find that AL Cas is probably an A-subtype contact binary(f = 35.7±0.9%) with a mass ratio q = 0.6399±0.0230 and an effective temperature difference?T = 78 K. The mass-radius relation of a higher luminosity component for AL Cas is obtained by two methods: depending on calculation of the Roche lobe(DCRL method) and depending on calculation of the W-D code(DCWD method). Using this relationship with the PARSEC model, we investigate the component masses of AL Cas as M1 = 1.19±0.23 M⊙ with M2 = 0.76±0.18 M⊙ by the DCRL method and M1 = 1.22±0.26 M⊙ with M2 = 0.78±0.20 M ⊙ by the DCWD method. By means of the photometric studies, we examine the related physical properties of AL Cas with the latest findings. We update the orbital period(Porb = 0.50055593 d) of AL Cas according to six new times of light minimum together with those collected from the literature. Meanwhile, the(O-C)2 curve analysis suggests that the orbital period of AL Cas has a cyclic variation with a period of 81.25 yr and an amplitude of 0.01415 d. This cyclic change would be caused by the light-travel time effect from a third body. A similar mass of the third body(M3 sin i′= 0.279 M⊙) is derived from our two methods.展开更多
A photometric analysis and evolutionary stages of the contact binary V2790 Ori are presented.The BV RC observations were carried out at the Thai National Observatory. The photometric light curves were fitted to provid...A photometric analysis and evolutionary stages of the contact binary V2790 Ori are presented.The BV RC observations were carried out at the Thai National Observatory. The photometric light curves were fitted to provide fundamental parameters, required to examine evolutionary stages of the binary. The results indicate that V2790 Ori is a W-type contact system with a mass ratio of q = 2.932. The orbital period increase is found at a rate of d P/dt = 1.03×10^-7 d yr^-1. This implies that a rate of mass transfer from the secondary component to the primary one is dm2/dt =6.31×10^-8 M⊙yr^-1. Furthermore, we find that from the detached phase to the contact phase, the amount of mass that the evolved secondary component has lost is 1.188±0.110 M⊙, i.e., mass lost by the system is 0.789±0.073 M⊙and mass transfer to the primary is0.399±0.037 M⊙. Since the time of the first overflow, the angular momentum loss is found to be 72.2% of JFOF, causing the orbit and Roche surface to shrink until the present time.展开更多
By analyzing two sets of complete BV Rc Ic light curves for V342 UMa and three sets of complete BV Rc Ic light curves for V509 Cam, we determined that the two systems are both W-subtype contact binaries and that V342 ...By analyzing two sets of complete BV Rc Ic light curves for V342 UMa and three sets of complete BV Rc Ic light curves for V509 Cam, we determined that the two systems are both W-subtype contact binaries and that V342 UMa manifests a shallow contact configuration, while V509 Cam exhibits a medium contact configuration. Given that both of them are totally eclipsing binaries, the physical parameters derived only by the photometric light curves are reliable. Meanwhile, the period changes of the two targets were analyzed based on all available eclipsing times. We discovered that V342 UMa shows long-term period decrease with a rate of-1.02(±0.54)× 10^-7 d yr^-1 and that V509 Cam displays long-term period increase with a rate of 3.96(±0.90)× 10^-8 d yr^-1. Both the conservative mass transfer and angular momentum loss via magnetic stellar winds can be used to interpret the long-term period decrease of V342 UMa. The longterm period increase of V509 Cam can be explained by mass transfer from the less massive star to the more massive one. The absolute parameters of the two binaries were estimated according to their Gaia distances and our derived photometric solution results. This method can be extended to other contact binaries without radial velocities but with reliable photometric solutions. Their evolutionary states were investigated and we found that they reveal properties that are identical to other W-subtype contact systems.展开更多
Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previo...Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previous investigators, it is determined that the O'Connell effect on the light curves has disappeared. By analyzing those multi-color light curves with the Wilson-Devinney code(W-D code),it is discovered that V1853 Ori is an A-type intermediate-contact binary with a degree of contact factor of f = 33.3%(3.7%) and a mass ratio of q = 0.1896(0.0013). Combining our 10 newly determined times of light minima together with others published in the literature, the period changes of the system are investigated. We found that the general trend of the observed minus calculated(O-C) curve shows a downward parabolic variation that corresponds to a long-term decrease in the orbital period with a rate of d P/dt =-1.96(0.46)×10^(-7) d yr^(-1). The long-term period decrease could be explained by mass transfer from the more-massive component to the less-massive one. By combining our photometric solutions with data from Gaia DR_2, absolute parameters were derived as M_1 = 1.20 M⊙, M_2 = 0.23 M⊙, R_1 = 1.36 R⊙and R_2 = 0.66 R⊙. The long-term period decrease and intermediate-contact configuration suggest that V1853 Ori will evolve into a high fill-out overcontact binary.展开更多
In this paper,we present the analysis of the stellar system HIP 101227 to determine the actual number of components in the system,and their properties.We use dynamical modeling and complex spectrophotometric(involving...In this paper,we present the analysis of the stellar system HIP 101227 to determine the actual number of components in the system,and their properties.We use dynamical modeling and complex spectrophotometric(involving atmospheric modeling)techniques with recent data,to determine the physical properties and orbital solution for the system,respectively,with better accuracy than past studies.Based on our analysis,we found that the system is more consistent with being a quadruple rather than a binary or a triple system as suggested by previous studies.The total mass of the system determined from our SED analysis is 3.42±0.20 M,which is distributed almost equally between the four stars.The stars are found to be zero-age main sequence stars;i.e.,at the last stage of pre-main sequence,with age less than 200 Myr and spectral types K0.All four stars have very similar physical characteristics,suggesting that the fragmentation process is the most likely theory for the formation and evolution of the system.展开更多
In this paper,we present the analysis of the stellar binary system HIP 43766 to determine its properties.We rely on dynamical modeling and atmospheric modeling with recent data to determine the orbital solution and th...In this paper,we present the analysis of the stellar binary system HIP 43766 to determine its properties.We rely on dynamical modeling and atmospheric modeling with recent data to determine the orbital solution and the physical properties of the system.There is a consistency between observed and synthetic photometry obtained using atmospheric modeling.The calculated dynamical mass sum of the system ranged between 1.691 and 2.609 solar masses,while it ranges between 2.0 and 2.1 as estimated utilizing atmospheric modeling.This could be due to inaccuracy in estimating the orbit,which could be modified with future observations with more relative positional measurements.The parameters of the system and the position of the components on the evolutionary tracks show that the system consists of F5 and G5 subgiant stars,mostly formed by fragmentation.A dynamical mass sum is predicted for the system.展开更多
Despite the intensive investigations since the discovery of LO And approximately 60 yr ago,its evolutionary status and subtype are still a matter of controversy.By simultaneously modeling the radialvelocity curves and...Despite the intensive investigations since the discovery of LO And approximately 60 yr ago,its evolutionary status and subtype are still a matter of controversy.By simultaneously modeling the radialvelocity curves and new light curves with the Wilson-Devinney code,we present new geometric,photometric and absolute parameters for this system.The simultaneous solution suggests that LO And is an A-subtype contact binary with a contact degree of 32.4%.The absolute parameters are modified to become M_(1)=1.409 M⊙,M_(2)=0.449 M⊙,R_(1)=1.36 R⊙and R_(2)=0.83 R⊙.From our observations and data from surveys,we determined 334 eclipse timings.The O−C diagram,constructed from the new eclipse timings and those reported in the literature,reveals a secular increase and a cyclic variation in its orbital period.The former is caused by conservative mass transfer from the secondary component with less mass to the primary one with more mass.The latter may be explained by either the cyclic magnetic activity on the two components or the light-time effect due to a third body.With the absolute physical parameters,we investigated its evolutionary status,and find that LO And is an unevolved contact binary undergoing thermal relaxation oscillation,which will eventually coalesce into a single star with rapid rotation.展开更多
V0842 Cep is a W UMa-type binary star that has been neglected since its discovery.We analysed the V RcIc light curves,obtained by the 1 m telescope at Weihai Observatory of Shandong University,using the Wilson-Devinne...V0842 Cep is a W UMa-type binary star that has been neglected since its discovery.We analysed the V RcIc light curves,obtained by the 1 m telescope at Weihai Observatory of Shandong University,using the Wilson-Devinney code.V0842 Cep was found to be a shallow contact binary system(f=8.7%)with a mass ratio of 2.281.Because its orbital inclination is greater than 80◦,the photometric results are reliable.A period study is included which reveals a continually decreasing orbital period(dp/dt=1.50(±0.42)×10^(−7)d y^(r−1)).This trend could be attributed to the angular momentum loss via stellar wind.展开更多
First multi-wavelength photometric light curves(LCs)of the short-period eclipsing binary(EB)1 SWASP J034439.97+030425.5(hereafter J0344)are presented and analyzed by using the 2013 version of the Wilson-Devinney(W-D)c...First multi-wavelength photometric light curves(LCs)of the short-period eclipsing binary(EB)1 SWASP J034439.97+030425.5(hereafter J0344)are presented and analyzed by using the 2013 version of the Wilson-Devinney(W-D)code.To explain the asymmetric LCs of J0344,a cool star-spot on the less massive component was employed.The photometric solutions suggest that J0344 is a W-subtype shallow contact EB with a contact degree of f=4.9%±3.0%and a mass ratio of q=2.456±0.013.Moreover,an obvious third light was detected in our analysis.We calculated the average luminosity contribution of the third light to the total light,and that value reaches up to 49.78%.Based on the O-C method,the variations of the orbital period were studied for the first time.Our O-C diagram reveals a secular decrease superimposed on a cyclic oscillation.The orbital period decreases at a rate of d P/dt=-6.07×10-7 d yr-1,which can be explained by the mass transfer from the more massive component to the less massive one.Besides,its O-C diagram also shows a cyclic oscillation with an amplitude of 0.0030 d and a period about 7.08 yr,which can be explained by the presence of a third body with a minimum mass of M3 min=0.15±0.02 M⊙.The third component may play an important role in the formation and evolution of J0344 by drawing angular momentum from the central system.展开更多
The eclipsing binary V2364 Cyg is an A7 V-type contact binary with a period of 0.5921 d.We present six spectra from LAMOST and BVRc light curves(LCs),which are simultaneously analyzed to obtain the absolute physical p...The eclipsing binary V2364 Cyg is an A7 V-type contact binary with a period of 0.5921 d.We present six spectra from LAMOST and BVRc light curves(LCs),which are simultaneously analyzed to obtain the absolute physical parameters.The first light maxima are brighter than the second ones by up to 0.m038,0.m036 and 0.m024 for BVRc bands,respectively.These distorted LCs are modeled by a cool spot on the less massive component.Its mass ratio and over-contact degree are q=0.319(±0.004) and f=28.4%(±1.0) % respectively.From the mass-luminosity diagram,the primary component is a normal main-sequence star,while the secondary one is a subgiant star.From the(O-C) curve,the orbital period secularly decreases at a rate dP/dt=-1.62(±0.03) × 10^-7 dyr^-1,which is mainly attributed to mass loss via stellar wind from the binary system.This may result in the observed infrared excess in the W4 band.展开更多
By using the Lunar-based Ultraviolet Telescope (LUT) from 2014 December 2 to December 4, the first near-UV light curve of the well-known Algol-type binary TW Dra is reported, which is analyzed with the 2013 version ...By using the Lunar-based Ultraviolet Telescope (LUT) from 2014 December 2 to December 4, the first near-UV light curve of the well-known Algol-type binary TW Dra is reported, which is analyzed with the 2013 version of the W-D code. Our solutions confirmed that TW Dra is a semi-detached binary system where the secondary component fills its Roche lobe. The mass ratio and a high inclination are obtained (q = 0.47, i = 86.68°). Based on 589 available data spanning more than one century, the complex period changes are studied. Secular increase and three cyclical changes are found in the corresponding orbital period analysis. The secular increase changes reveal mass transfer from the secondary component to the primary one at a rate of 6.8 × 10-7 M yr-1. One large cyclical change of 116.04 yr may be caused by disturbance of visual component ADS 9706B orbiting TW Dra (ADS 9706A), while the other two cyclical changes with shorter periods of 22.47 and 37.27 yr can be explained as the result of two circumbinary companions that are orbiting around TW Dra, where the two companions are in simple 3 : 5 orbit-rotation resonances. TW Dra itself is a basic binary in a possible sextuple system with the configuration (1 + 1) + (1 + 1) + (1 + 1), which further suggests that multiplicity may be a fairly common phenomenon in close binary systems.展开更多
A photometric study of a contact binary system, GV Leo is presented. New observations were done using the B VR filter bands. We find that a revised orbital period is 0.26673171 d and the orbital period of this system ...A photometric study of a contact binary system, GV Leo is presented. New observations were done using the B VR filter bands. We find that a revised orbital period is 0.26673171 d and the orbital period of this system is decreasing at a rate of dP/ dt = -4.95 × 10-7 d yr-1. The photometric solutions are fairly well fitted at a mass ratio of q = 0.1879, with a fillout factor of f = 17.74%. The results indicate that there exists mass transfer from the more massive component to the less massive one at a rate of relative mass exchange, 6zl/m = -1.09× 10-7 yr-1. It is possible that this weak- contact system, that shows a decreasing orbital period, may undergo contraction of the inner and outer critical Roche lobes and evolve into a deep-contact binary.展开更多
New multi-color BVRcIc photometric observations are presented for the W UMa type eclips- ing binary V1073 Cyg. The multi-color light curve analysis with the Wilson-Devinney procedure yielded the absolute parameters of...New multi-color BVRcIc photometric observations are presented for the W UMa type eclips- ing binary V1073 Cyg. The multi-color light curve analysis with the Wilson-Devinney procedure yielded the absolute parameters of this system, showing that V 1073 Cyg is a shallow contact binary system with a fill-out factor f = 0.124(±0.011). We collected all available times of light minima spanning 119yr, including CCD data to construct the O - C curve, and performed detailed O - C analysis. The O - C diagram shows that the period change is complex. A long-term continuous decrease and a cyclic vari- ation exist. The period is decreasing at a rate ofP = -1.04(±0.18) × 10-10 d cycle-land, with the period decrease, V1073 Cyg will evolve to the deep contact stage. The cyclic variation with a period of P3 = 82.7(±3.6) yr and an amplitude of A = 0.028(±0.002) d may be explained by magnetic activ- ity of one or both components or the light travel time effect caused by a distant third companion with M3(i1 = 90°) = 0.511 M⊙.展开更多
Nova Sco 2008 (=V1309 Sco) is an example of a V838 Mon type eruption rather than a typical classical nova. This enigmatic object was recently shown to have resulted from the merger of two stars in a contact binary. ...Nova Sco 2008 (=V1309 Sco) is an example of a V838 Mon type eruption rather than a typical classical nova. This enigmatic object was recently shown to have resulted from the merger of two stars in a contact binary. It is the first stellar merger that was identified to be undergoing a common envelope transient. To understand the properties of its binary progenitor, the pre-outburst light curves were analyzed by using the W-D method. The photometric solution of the 2002 light curve shows that it is a deep contact binary (f = 89.5(~40.5)%) with a mass ratio of 0.094. The asymmetry of the light curve is explained by the presence of a dark spot on the more massive component. The extremely high fill-out factor suggests that the merging of the contact binary is driven by dynamical mass loss from the outer Lagrange point. However, the analysis of the 2004 light curve indicates that no solutions were obtained even at an extremely low mass ratio of q = 0.03. This suggests that the common convective envelope of the binary system disappeared and the secondary component spiraled into the envelope of the primary in 2004. Finally, the ejection of the envelope of the primary produced the outburst.展开更多
We carried out time-series photometric observations in the Re-band of the young, poorly studied open cluster ASCC 5 during November and December, 2012, to search for magnetically active stars, and discovered four ecli...We carried out time-series photometric observations in the Re-band of the young, poorly studied open cluster ASCC 5 during November and December, 2012, to search for magnetically active stars, and discovered four eclipsing binary stars in this field. In order to characterize these four newly discovered binaries, we derived their orbital periods by their times of light minimum, estimated their effective tem- peratures based on their (J - H) colors and analyzed their light curves using the Wilson-Devinney light curve modeling technique. Our analyses reveal that all of them are contact binaries with short orbital periods of less than 0.5 d, with spectral types from late-F to mid-K. Among them, one is a typical A subtype contact binary with a mass ratio around 0.5 and a period of 0.44 d, and one is an H subtype contact binary with a high mass ratio around 0.9 and a short period of about 0.27 d. The other two systems show low amplitudes of light variation (Ant 〈0.11m); their actual photomet- ric mass ratios could not be determined by the light curve modelings, probably due to their attributes of being partially eclipsing stars. A preliminary analysis for these two systems indicates that both of them are likely to be W subtype contact binaries with low orbital inclinations. In addition, both of these two low amplitude variables show asymmetric distorted light curves (e.g., O'Connell effect of ARc --~0.02m) during the observing runs, suggesting the presence of starspots on these two systems. More inter- estingly, the one showing a large case of the O'Connell effect presented a remarkable variation in the shape of the light curve on a time scale of one day, indicating that this star is in a very active state. Therefore, these two stars need spectroscopic observations to precisely determine their parameters, as well as further photometric observations to understand the properties of their magnetic activity, e.g., the evolution of starspots.展开更多
We present a CCD photometry study of a newly discovered active eclipsing binary in the field of open cluster NGC 1348 based on the first time-series photometric observation. From the minimum times, we determined an or...We present a CCD photometry study of a newly discovered active eclipsing binary in the field of open cluster NGC 1348 based on the first time-series photometric observation. From the minimum times, we determined an orbital period of P = 0.691363 d. Among our datasets, the BV(.RI)c light curves obtained in November 2008 were analyzed using the Wilson-Devinney light curve modeling tech- nique. Because of the uncertainty of the membership of this binary in open cluster NGC 1348, we have analyzed the photometric data in two cases with different primary effective temperatures: Case A (T1 = 7750K) and Case B (T1 = 5250K). Our anal- yses reveal that, for Case A, it is a deep (f 〉 70%), very low mass ratio (q - 0.096) binary system, indicating that it is now in the late evolution stage of a contact binary; while for Case B, it is a red system with extraordinarily long orbital period with respect to the period-color relation for normal contact binaries, which suggests that this binary has evolved off the main sequence. The well known O'Connell effect (e.g., AB 0.03 mag) was found in the dataset obtained in November 2008, which could be due to the existence of starspots on the components, therefore the corresponding spot properties (for Case A: hot spot; for Case B: dark spot) were determined using the Wilson-Devinney code. With the purpose of analyzing the dark spot activity for Case B, we compared the light curves derived in different observing runs, and found that a slight change appeared from November to December, 2008, which indicates the evolution of spot activity on at least one component over a time scale of about one month.展开更多
基金supported by the Joint Research Funds in Astronomy (U1731110, U1731106 and U1531108) under cooperative agreement between the National Natural Science Foundation of China and the Chinese Academy of Sciencespartially supported by the National Natural Science Foundation of China (11703020)
文摘We present a period analysis of the near-contact binary CN And using all available times of light minima. It is revealed that the orbital period exhibits a long-term decrease as well as a small-amplitude cyclic oscillation. This result suggests that the secular period decrease at the rate of d P/dt =-1.4017 ×10-7 d yr-1 is caused by a combination of mass transfer and angular momentum loss due to magnetic braking. The periodic variation with an amplitude of A = 0.0036 d and a period of Pmod = 28.3542 yr should be rooted in the light-time effect of a third body, rather than cyclic magnetic activity.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11573063 and 11611530685)the Key Science Foundation of Yunnan Province (Grant No. 2017FA001)+1 种基金CAS “Light of West China” ProgramCAS Interdisciplinary Innovation Team
文摘The lander of China’s Chang’E-3 spacecraft is equipped with a 15-cm telescope that is very useful for monitoring celestial objects in the ultraviolet(UV) band(245–340 nm).The Lunar-based Ultraviolet Telescope(LUT) is the first long-term lunar-based astronomical observatory,that can make uninterrupted observations of a target from the Moon.Here we present the continuous complete UV light curve of the eclipsing binary TX Herculis(TX Her).The analysis of the light curve suggests that TX Her is a detached binary.The dip in the light curve was explained by the emergence of a stellar dark spot on the less massive F0 type component.The cyclic change of arrival eclipse times for the system reveals that it contains an additional stellar companion with a minimal mass of 0.35 M⊙ and a period of 48.92 yr,which is supported by the detected light contribution of the third body from light curve analysis.This third body may play an important role in the formation of the present short-period system TX Her.
基金financial support from the Universidad Nacional Aut ónoma de México (UNAM) and DGAPA (PAPIIT IN 100918)supported by the National Natural Science Foundation of China (NSFC) (No. 11703016)+3 种基金by the Joint Research Fund in Astronomy (No. U1431105)by the Natural Science Foundation of Shandong Province (No. ZR2014AQ019)by the Young Scholars Program of Shandong University, Weihai (No. 20820171006)by the Open Research Program of Key Laboratory for the Structure and Evolution of Celestial Objects (No. OP201704)
文摘New light curves and photometric solutions of FP Lyn,FV CVn and V354 UMa are presented.We found that these three systems are W-subtype shallow contact binaries.In addition,it is obvious that the light curves of FP Lyn and V354 UMa are asymmetric.Therefore,a hot spot was added on the primary star of FP Lyn and a dark spot was added on the secondary star of V354 UMa.At the same time,we added a third light to the photometric solution of FP Lyn for the final result.The obtained mass ratios and fill-out factors are q = 1.153 and f = 13.4% for FP Lyn,q = 1.075 and f = 4.6% for FV CVn,and q = 3.623 and f = 10.7% for V354 UMa respectively.The investigations of orbital period for these three systems indicate that the periods are variable.FP Lyn and V354 UMa were discovered to have secularly increasing components with rates of dp/dt = 4.19 ×10^-7 dyr^-1 and dp/dt = 7.70 ×10^-7 dyr^-1 respectively,which are feasibly caused by conservative mass transfer from the less massive component to the more massive component.In addition,some variable components were discovered for FV CVn,including a rate of dp/dt =-1.13 ×10^-6 dyr^-1 accompanied by a cyclic oscillation with amplitude and period of 0.0069 d and 10.65 yr respectively.The most likely explanation for the long-term decrease is angular momentum loss.The existence of an additional star is the most plausible explanation for the periodic variation.
基金partly supported by the National Natural Science Foundation of China (Nos. 11573063 and 11611530685)the Key Science Foundation of Yunnan Province (No. 2017FA001)the CAS “Light of West China” Program and the CAS Interdisciplinary Innovation Team
文摘TZ Eri and TU Her are both classic Algol-type systems(Algols). By observing and collecting times of minimum light, we constructed the O-C curves for the two systems. The long-time upward and downward parabolas shown in these diagrams are considered to be the result of the combination of mass transfer and angular momentum loss. The secular orbital period change rates are d P/dt = 4.74(±0.12) ×10-7 d yr-1 and d P/dt =-2.33(±0.01) × 10-6 d yr-1, respectively. There are also cyclic variations in their O-C curves which might be caused by the light-travel time effect(LTTE). A circumbinary star may exist in the TZ Eri system with a mass of at least 1.34 M⊙, while there are possibly two celestial bodies that almost follow a 2 : 1 resonance orbit around the TU Her binary pair. Their masses are at least 2.43 M⊙and 1.27 M⊙.
基金supported by the program of the Light in China’s Western Region (LCWR,Grant No. 2015-XBQN-A-02)the National Natural Science Foundation of China (Grant Nos. 11273051, 11661161016, 11473024 and 11863005)+1 种基金the 13th Fiveyear Information Plan of Chinese Academy of Sciences (Grant No. XXH13503-03-107)the Youth Innovation Promotion Association CAS (Grant No. 2018080)
文摘We utilize the PAdova and TRieste Stellar Evolution Code(PARSEC) combined with photometric observations to determine a guaranteed mass of AL Cas and re-examine its related physical parameters.Multicolor-photometric observations of AL Cas have been performed in 2016 and 2017. We use the WilsonDevinney(W-D) code to analyze the light curves and find that AL Cas is probably an A-subtype contact binary(f = 35.7±0.9%) with a mass ratio q = 0.6399±0.0230 and an effective temperature difference?T = 78 K. The mass-radius relation of a higher luminosity component for AL Cas is obtained by two methods: depending on calculation of the Roche lobe(DCRL method) and depending on calculation of the W-D code(DCWD method). Using this relationship with the PARSEC model, we investigate the component masses of AL Cas as M1 = 1.19±0.23 M⊙ with M2 = 0.76±0.18 M⊙ by the DCRL method and M1 = 1.22±0.26 M⊙ with M2 = 0.78±0.20 M ⊙ by the DCWD method. By means of the photometric studies, we examine the related physical properties of AL Cas with the latest findings. We update the orbital period(Porb = 0.50055593 d) of AL Cas according to six new times of light minimum together with those collected from the literature. Meanwhile, the(O-C)2 curve analysis suggests that the orbital period of AL Cas has a cyclic variation with a period of 81.25 yr and an amplitude of 0.01415 d. This cyclic change would be caused by the light-travel time effect from a third body. A similar mass of the third body(M3 sin i′= 0.279 M⊙) is derived from our two methods.
文摘A photometric analysis and evolutionary stages of the contact binary V2790 Ori are presented.The BV RC observations were carried out at the Thai National Observatory. The photometric light curves were fitted to provide fundamental parameters, required to examine evolutionary stages of the binary. The results indicate that V2790 Ori is a W-type contact system with a mass ratio of q = 2.932. The orbital period increase is found at a rate of d P/dt = 1.03×10^-7 d yr^-1. This implies that a rate of mass transfer from the secondary component to the primary one is dm2/dt =6.31×10^-8 M⊙yr^-1. Furthermore, we find that from the detached phase to the contact phase, the amount of mass that the evolved secondary component has lost is 1.188±0.110 M⊙, i.e., mass lost by the system is 0.789±0.073 M⊙and mass transfer to the primary is0.399±0.037 M⊙. Since the time of the first overflow, the angular momentum loss is found to be 72.2% of JFOF, causing the orbit and Roche surface to shrink until the present time.
基金supported by the National Natural Science Foundation of China (No. 11703016)the Joint Research Fund in Astronomy (No. U1431105) under cooperative agreement between the National Natural Science Foundation of China and the Chinese Academy of Sciences+5 种基金the program of the Light in China’s Western Region (No. 2015-XBQNA-02)the Natural Science Foundation of Shandong Province (Nos. ZR2014AQ019 and JQ201702)the Young Scholars Program of Shandong University, Weihai (Nos. 20820162003 and 20820171006)the program of Tianshan Youth (No. 2017Q091)the Open Research Program of Key Laboratory for the Structure and Evolution of Celestial Objects (No. OP201704)partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences
文摘By analyzing two sets of complete BV Rc Ic light curves for V342 UMa and three sets of complete BV Rc Ic light curves for V509 Cam, we determined that the two systems are both W-subtype contact binaries and that V342 UMa manifests a shallow contact configuration, while V509 Cam exhibits a medium contact configuration. Given that both of them are totally eclipsing binaries, the physical parameters derived only by the photometric light curves are reliable. Meanwhile, the period changes of the two targets were analyzed based on all available eclipsing times. We discovered that V342 UMa shows long-term period decrease with a rate of-1.02(±0.54)× 10^-7 d yr^-1 and that V509 Cam displays long-term period increase with a rate of 3.96(±0.90)× 10^-8 d yr^-1. Both the conservative mass transfer and angular momentum loss via magnetic stellar winds can be used to interpret the long-term period decrease of V342 UMa. The longterm period increase of V509 Cam can be explained by mass transfer from the less massive star to the more massive one. The absolute parameters of the two binaries were estimated according to their Gaia distances and our derived photometric solution results. This method can be extended to other contact binaries without radial velocities but with reliable photometric solutions. Their evolutionary states were investigated and we found that they reveal properties that are identical to other W-subtype contact systems.
基金supported by the National Natural Science Foundation of China (No. 11503077)
文摘Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previous investigators, it is determined that the O'Connell effect on the light curves has disappeared. By analyzing those multi-color light curves with the Wilson-Devinney code(W-D code),it is discovered that V1853 Ori is an A-type intermediate-contact binary with a degree of contact factor of f = 33.3%(3.7%) and a mass ratio of q = 0.1896(0.0013). Combining our 10 newly determined times of light minima together with others published in the literature, the period changes of the system are investigated. We found that the general trend of the observed minus calculated(O-C) curve shows a downward parabolic variation that corresponds to a long-term decrease in the orbital period with a rate of d P/dt =-1.96(0.46)×10^(-7) d yr^(-1). The long-term period decrease could be explained by mass transfer from the more-massive component to the less-massive one. By combining our photometric solutions with data from Gaia DR_2, absolute parameters were derived as M_1 = 1.20 M⊙, M_2 = 0.23 M⊙, R_1 = 1.36 R⊙and R_2 = 0.66 R⊙. The long-term period decrease and intermediate-contact configuration suggest that V1853 Ori will evolve into a high fill-out overcontact binary.
基金A.Annuar acknowledges financial support from Malaysia’s Ministry of Higher Education Fundamental Research Grant Scheme code FRGS/1/2019/STG02/UKM/02/7This work has made use of the SAO/NASA,SIMBAD database,Fourth Catalog of Interferometric Measurements of Binary Stars,Sixth Catalog of Orbits of Visual Binary Stars,IPAC data systems,ORBITX code and Al-Wardat’s complex method for analyzing CVBMSs with its codes,written in FORTRAN and Interactive Data Language(IDL)of the ITT Visual Information Solutions Corporation.
文摘In this paper,we present the analysis of the stellar system HIP 101227 to determine the actual number of components in the system,and their properties.We use dynamical modeling and complex spectrophotometric(involving atmospheric modeling)techniques with recent data,to determine the physical properties and orbital solution for the system,respectively,with better accuracy than past studies.Based on our analysis,we found that the system is more consistent with being a quadruple rather than a binary or a triple system as suggested by previous studies.The total mass of the system determined from our SED analysis is 3.42±0.20 M,which is distributed almost equally between the four stars.The stars are found to be zero-age main sequence stars;i.e.,at the last stage of pre-main sequence,with age less than 200 Myr and spectral types K0.All four stars have very similar physical characteristics,suggesting that the fragmentation process is the most likely theory for the formation and evolution of the system.
基金This work has made use of the Fourth Interferometric Catalogue of Binary Stars,SIMBAD database,Sixth Catalog of Orbits of Visual Binary StarsORBITX code and Al-Wardat’s complex method for analyzing close visual binary and multiple systems with its codes。
文摘In this paper,we present the analysis of the stellar binary system HIP 43766 to determine its properties.We rely on dynamical modeling and atmospheric modeling with recent data to determine the orbital solution and the physical properties of the system.There is a consistency between observed and synthetic photometry obtained using atmospheric modeling.The calculated dynamical mass sum of the system ranged between 1.691 and 2.609 solar masses,while it ranges between 2.0 and 2.1 as estimated utilizing atmospheric modeling.This could be due to inaccuracy in estimating the orbit,which could be modified with future observations with more relative positional measurements.The parameters of the system and the position of the components on the evolutionary tracks show that the system consists of F5 and G5 subgiant stars,mostly formed by fragmentation.A dynamical mass sum is predicted for the system.
基金We appreciate the support of the Joint Research Funds in Astronomy(Grant Nos.U1931115,U2031114,and U1731110)under cooperative agreement between the National Natural Science Foundation of China and the Chinese Academy of Sciencesthe staff of the Xinglong 85cm telescopeThis work was partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences.
文摘Despite the intensive investigations since the discovery of LO And approximately 60 yr ago,its evolutionary status and subtype are still a matter of controversy.By simultaneously modeling the radialvelocity curves and new light curves with the Wilson-Devinney code,we present new geometric,photometric and absolute parameters for this system.The simultaneous solution suggests that LO And is an A-subtype contact binary with a contact degree of 32.4%.The absolute parameters are modified to become M_(1)=1.409 M⊙,M_(2)=0.449 M⊙,R_(1)=1.36 R⊙and R_(2)=0.83 R⊙.From our observations and data from surveys,we determined 334 eclipse timings.The O−C diagram,constructed from the new eclipse timings and those reported in the literature,reveals a secular increase and a cyclic variation in its orbital period.The former is caused by conservative mass transfer from the secondary component with less mass to the primary one with more mass.The latter may be explained by either the cyclic magnetic activity on the two components or the light-time effect due to a third body.With the absolute physical parameters,we investigated its evolutionary status,and find that LO And is an unevolved contact binary undergoing thermal relaxation oscillation,which will eventually coalesce into a single star with rapid rotation.
基金This work is supported by the Joint Research Fund in Astronomy(Grant No.U1931103)under cooperative agreement between National Natural Science Foundation of China(NSFC)Chinese Academy of Sciences(CAS),the NSFC(Grant No.11703016)+2 种基金the Natural Science Foundation of Shandong Province(Grant No.ZR2014AQ019)the Young Scholars Program of Shandong University,Weihai(Grant No.20820171006)the Chinese Academy of Sciences Interdisciplinary Innovation Team,and by the Open Research Program of Key Laboratory for the Structure and Evolution of Celestial Objects(Grant No.OP201704).
文摘V0842 Cep is a W UMa-type binary star that has been neglected since its discovery.We analysed the V RcIc light curves,obtained by the 1 m telescope at Weihai Observatory of Shandong University,using the Wilson-Devinney code.V0842 Cep was found to be a shallow contact binary system(f=8.7%)with a mass ratio of 2.281.Because its orbital inclination is greater than 80◦,the photometric results are reliable.A period study is included which reveals a continually decreasing orbital period(dp/dt=1.50(±0.42)×10^(−7)d y^(r−1)).This trend could be attributed to the angular momentum loss via stellar wind.
基金supported by the Natural Natural Science Foundation of China(NSFC)(Grant Nos.U1931101,11933008,11573063,U1731238,U1831120 and 11565010)the Key Science Foundation of Yunnan Province(No.2017FA001)+7 种基金the Special Funds for Theoretical Physics of the NSFC(No.11847102)the Joint Research Fund in Astronomy(Grant Nos.U1631108 and U1831109)under cooperative agreement between the NSFC and the Chinese Academy of Sciences(CAS)the research fund of Sichuan University of Science and Engineering(Grant No.2015RC42)the Science Foundation of China University of Petroleum-Beijing At Karamay(No.RCYJ2016B-03-006)the Key Laboratory for the Structure and Evolution of Celestial Objects,CAS(No.OP201708)the Doctoral Starting up Foundation of Guizhou Normal University 2018(GZNUD[2018]12)the Guizhou province’s innovation and entrepreneurial project for high-level overseas talents(Grant No.[2019]02)supported by the Open Project Program of the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences。
文摘First multi-wavelength photometric light curves(LCs)of the short-period eclipsing binary(EB)1 SWASP J034439.97+030425.5(hereafter J0344)are presented and analyzed by using the 2013 version of the Wilson-Devinney(W-D)code.To explain the asymmetric LCs of J0344,a cool star-spot on the less massive component was employed.The photometric solutions suggest that J0344 is a W-subtype shallow contact EB with a contact degree of f=4.9%±3.0%and a mass ratio of q=2.456±0.013.Moreover,an obvious third light was detected in our analysis.We calculated the average luminosity contribution of the third light to the total light,and that value reaches up to 49.78%.Based on the O-C method,the variations of the orbital period were studied for the first time.Our O-C diagram reveals a secular decrease superimposed on a cyclic oscillation.The orbital period decreases at a rate of d P/dt=-6.07×10-7 d yr-1,which can be explained by the mass transfer from the more massive component to the less massive one.Besides,its O-C diagram also shows a cyclic oscillation with an amplitude of 0.0030 d and a period about 7.08 yr,which can be explained by the presence of a third body with a minimum mass of M3 min=0.15±0.02 M⊙.The third component may play an important role in the formation and evolution of J0344 by drawing angular momentum from the central system.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.11873003&U1631108)Natural Science Research Key Program of Anhui Provincial Department of Education(No.KJ2019A0954)+1 种基金the Outstanding Young Talents Program of Anhui Provincial Department of Education(Nos.gxyq2018161&gxgnfx2019084)Open Project Program of the Key Laboratory of Optical Astronomy,National Astronomical Observatories,Chinese Academy of Sciences。
文摘The eclipsing binary V2364 Cyg is an A7 V-type contact binary with a period of 0.5921 d.We present six spectra from LAMOST and BVRc light curves(LCs),which are simultaneously analyzed to obtain the absolute physical parameters.The first light maxima are brighter than the second ones by up to 0.m038,0.m036 and 0.m024 for BVRc bands,respectively.These distorted LCs are modeled by a cool spot on the less massive component.Its mass ratio and over-contact degree are q=0.319(±0.004) and f=28.4%(±1.0) % respectively.From the mass-luminosity diagram,the primary component is a normal main-sequence star,while the secondary one is a subgiant star.From the(O-C) curve,the orbital period secularly decreases at a rate dP/dt=-1.62(±0.03) × 10^-7 dyr^-1,which is mainly attributed to mass loss via stellar wind from the binary system.This may result in the observed infrared excess in the W4 band.
基金supported by the Key Research Program of Chinese Academy of Sience (KGEDEW-603)the National Natural Science Foundation of China (Nos.11403095,11133007 and 11325315)+2 种基金the Yunnan Natural Science Foundation (2014FB187)the Science Foundation of Yunnan Province (Grant No.2012HC011)the Strategic Priority Research Program “The Emergence of Cosmological Structures” of the Chinese Academy of Sciences (Grant No.XDB09010202)
文摘By using the Lunar-based Ultraviolet Telescope (LUT) from 2014 December 2 to December 4, the first near-UV light curve of the well-known Algol-type binary TW Dra is reported, which is analyzed with the 2013 version of the W-D code. Our solutions confirmed that TW Dra is a semi-detached binary system where the secondary component fills its Roche lobe. The mass ratio and a high inclination are obtained (q = 0.47, i = 86.68°). Based on 589 available data spanning more than one century, the complex period changes are studied. Secular increase and three cyclical changes are found in the corresponding orbital period analysis. The secular increase changes reveal mass transfer from the secondary component to the primary one at a rate of 6.8 × 10-7 M yr-1. One large cyclical change of 116.04 yr may be caused by disturbance of visual component ADS 9706B orbiting TW Dra (ADS 9706A), while the other two cyclical changes with shorter periods of 22.47 and 37.27 yr can be explained as the result of two circumbinary companions that are orbiting around TW Dra, where the two companions are in simple 3 : 5 orbit-rotation resonances. TW Dra itself is a basic binary in a possible sextuple system with the configuration (1 + 1) + (1 + 1) + (1 + 1), which further suggests that multiplicity may be a fairly common phenomenon in close binary systems.
基金support by the Faculty of Science,Chiang Mai University
文摘A photometric study of a contact binary system, GV Leo is presented. New observations were done using the B VR filter bands. We find that a revised orbital period is 0.26673171 d and the orbital period of this system is decreasing at a rate of dP/ dt = -4.95 × 10-7 d yr-1. The photometric solutions are fairly well fitted at a mass ratio of q = 0.1879, with a fillout factor of f = 17.74%. The results indicate that there exists mass transfer from the more massive component to the less massive one at a rate of relative mass exchange, 6zl/m = -1.09× 10-7 yr-1. It is possible that this weak- contact system, that shows a decreasing orbital period, may undergo contraction of the inner and outer critical Roche lobes and evolve into a deep-contact binary.
基金partly supported by the National Natural Science Foundation of China(Nos.11573063,11325315 and U1631108)the Key Science Foundation of Yunnan Province(No.2017FA001)+1 种基金Chinese Academy of Sciences“Light of West China”Programthe research fund of Sichuan University of Science and Engineering(Grant No.2015RC42)
文摘New multi-color BVRcIc photometric observations are presented for the W UMa type eclips- ing binary V1073 Cyg. The multi-color light curve analysis with the Wilson-Devinney procedure yielded the absolute parameters of this system, showing that V 1073 Cyg is a shallow contact binary system with a fill-out factor f = 0.124(±0.011). We collected all available times of light minima spanning 119yr, including CCD data to construct the O - C curve, and performed detailed O - C analysis. The O - C diagram shows that the period change is complex. A long-term continuous decrease and a cyclic vari- ation exist. The period is decreasing at a rate ofP = -1.04(±0.18) × 10-10 d cycle-land, with the period decrease, V1073 Cyg will evolve to the deep contact stage. The cyclic variation with a period of P3 = 82.7(±3.6) yr and an amplitude of A = 0.028(±0.002) d may be explained by magnetic activ- ity of one or both components or the light travel time effect caused by a distant third companion with M3(i1 = 90°) = 0.511 M⊙.
基金supported by the National Natural Science Foundation of China(Nos.11133007,11325315 and 11573063)the Key Research Program of the Chinese Academy of Sciences(Grant No.KGZD-EW-603)+1 种基金the Science Foundation of Yunnan Province(Nos.2012HC011 and 2013FB084)the Strategic Priority Research Program“The Emergence of Cosmological Structures”of the Chinese Academy of Sciences(No.XDB09010202)
文摘Nova Sco 2008 (=V1309 Sco) is an example of a V838 Mon type eruption rather than a typical classical nova. This enigmatic object was recently shown to have resulted from the merger of two stars in a contact binary. It is the first stellar merger that was identified to be undergoing a common envelope transient. To understand the properties of its binary progenitor, the pre-outburst light curves were analyzed by using the W-D method. The photometric solution of the 2002 light curve shows that it is a deep contact binary (f = 89.5(~40.5)%) with a mass ratio of 0.094. The asymmetry of the light curve is explained by the presence of a dark spot on the more massive component. The extremely high fill-out factor suggests that the merging of the contact binary is driven by dynamical mass loss from the outer Lagrange point. However, the analysis of the 2004 light curve indicates that no solutions were obtained even at an extremely low mass ratio of q = 0.03. This suggests that the common convective envelope of the binary system disappeared and the secondary component spiraled into the envelope of the primary in 2004. Finally, the ejection of the envelope of the primary produced the outburst.
基金supported by the National Natural Science Foundation of China (Grants Nos. 10373023 10773027 and 11263001)
文摘We carried out time-series photometric observations in the Re-band of the young, poorly studied open cluster ASCC 5 during November and December, 2012, to search for magnetically active stars, and discovered four eclipsing binary stars in this field. In order to characterize these four newly discovered binaries, we derived their orbital periods by their times of light minimum, estimated their effective tem- peratures based on their (J - H) colors and analyzed their light curves using the Wilson-Devinney light curve modeling technique. Our analyses reveal that all of them are contact binaries with short orbital periods of less than 0.5 d, with spectral types from late-F to mid-K. Among them, one is a typical A subtype contact binary with a mass ratio around 0.5 and a period of 0.44 d, and one is an H subtype contact binary with a high mass ratio around 0.9 and a short period of about 0.27 d. The other two systems show low amplitudes of light variation (Ant 〈0.11m); their actual photomet- ric mass ratios could not be determined by the light curve modelings, probably due to their attributes of being partially eclipsing stars. A preliminary analysis for these two systems indicates that both of them are likely to be W subtype contact binaries with low orbital inclinations. In addition, both of these two low amplitude variables show asymmetric distorted light curves (e.g., O'Connell effect of ARc --~0.02m) during the observing runs, suggesting the presence of starspots on these two systems. More inter- estingly, the one showing a large case of the O'Connell effect presented a remarkable variation in the shape of the light curve on a time scale of one day, indicating that this star is in a very active state. Therefore, these two stars need spectroscopic observations to precisely determine their parameters, as well as further photometric observations to understand the properties of their magnetic activity, e.g., the evolution of starspots.
基金supported by the National Natural Science Foundation of China(Grant Nos. 10373023 and 10773027)grants from the Sik Sik Yuen of Hong Kong,China
文摘We present a CCD photometry study of a newly discovered active eclipsing binary in the field of open cluster NGC 1348 based on the first time-series photometric observation. From the minimum times, we determined an orbital period of P = 0.691363 d. Among our datasets, the BV(.RI)c light curves obtained in November 2008 were analyzed using the Wilson-Devinney light curve modeling tech- nique. Because of the uncertainty of the membership of this binary in open cluster NGC 1348, we have analyzed the photometric data in two cases with different primary effective temperatures: Case A (T1 = 7750K) and Case B (T1 = 5250K). Our anal- yses reveal that, for Case A, it is a deep (f 〉 70%), very low mass ratio (q - 0.096) binary system, indicating that it is now in the late evolution stage of a contact binary; while for Case B, it is a red system with extraordinarily long orbital period with respect to the period-color relation for normal contact binaries, which suggests that this binary has evolved off the main sequence. The well known O'Connell effect (e.g., AB 0.03 mag) was found in the dataset obtained in November 2008, which could be due to the existence of starspots on the components, therefore the corresponding spot properties (for Case A: hot spot; for Case B: dark spot) were determined using the Wilson-Devinney code. With the purpose of analyzing the dark spot activity for Case B, we compared the light curves derived in different observing runs, and found that a slight change appeared from November to December, 2008, which indicates the evolution of spot activity on at least one component over a time scale of about one month.