摘要
By analyzing two sets of complete BV Rc Ic light curves for V342 UMa and three sets of complete BV Rc Ic light curves for V509 Cam, we determined that the two systems are both W-subtype contact binaries and that V342 UMa manifests a shallow contact configuration, while V509 Cam exhibits a medium contact configuration. Given that both of them are totally eclipsing binaries, the physical parameters derived only by the photometric light curves are reliable. Meanwhile, the period changes of the two targets were analyzed based on all available eclipsing times. We discovered that V342 UMa shows long-term period decrease with a rate of-1.02(±0.54)× 10^-7 d yr^-1 and that V509 Cam displays long-term period increase with a rate of 3.96(±0.90)× 10^-8 d yr^-1. Both the conservative mass transfer and angular momentum loss via magnetic stellar winds can be used to interpret the long-term period decrease of V342 UMa. The longterm period increase of V509 Cam can be explained by mass transfer from the less massive star to the more massive one. The absolute parameters of the two binaries were estimated according to their Gaia distances and our derived photometric solution results. This method can be extended to other contact binaries without radial velocities but with reliable photometric solutions. Their evolutionary states were investigated and we found that they reveal properties that are identical to other W-subtype contact systems.
By analyzing two sets of complete BV Rc Ic light curves for V342 UMa and three sets of complete BV Rc Ic light curves for V509 Cam, we determined that the two systems are both W-subtype contact binaries and that V342 UMa manifests a shallow contact configuration, while V509 Cam exhibits a medium contact configuration. Given that both of them are totally eclipsing binaries, the physical parameters derived only by the photometric light curves are reliable. Meanwhile, the period changes of the two targets were analyzed based on all available eclipsing times. We discovered that V342 UMa shows long-term period decrease with a rate of-1.02(±0.54) × 10-7 d yr-1 and that V509 Cam displays long-term period increase with a rate of 3.96(±0.90) × 10-8 d yr-1. Both the conservative mass transfer and angular momentum loss via magnetic stellar winds can be used to interpret the long-term period decrease of V342 UMa. The longterm period increase of V509 Cam can be explained by mass transfer from the less massive star to the more massive one. The absolute parameters of the two binaries were estimated according to their Gaia distances and our derived photometric solution results. This method can be extended to other contact binaries without radial velocities but with reliable photometric solutions. Their evolutionary states were investigated and we found that they reveal properties that are identical to other W-subtype contact systems.
基金
supported by the National Natural Science Foundation of China (No. 11703016)
the Joint Research Fund in Astronomy (No. U1431105) under cooperative agreement between the National Natural Science Foundation of China and the Chinese Academy of Sciences
the program of the Light in China’s Western Region (No. 2015-XBQNA-02)
the Natural Science Foundation of Shandong Province (Nos. ZR2014AQ019 and JQ201702)
the Young Scholars Program of Shandong University, Weihai (Nos. 20820162003 and 20820171006)
the program of Tianshan Youth (No. 2017Q091)
the Open Research Program of Key Laboratory for the Structure and Evolution of Celestial Objects (No. OP201704)
partially supported by the Open Project Program of the Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences