Let K_(1,k)be a star of order k+1 and K_(n)■K_(1,k)the graph obtained from a complete graph K_(n)and an additional vertex v by joining v to k vertices of K_(n).For graphs G and H,the star-critical Ramsey number r_(*)...Let K_(1,k)be a star of order k+1 and K_(n)■K_(1,k)the graph obtained from a complete graph K_(n)and an additional vertex v by joining v to k vertices of K_(n).For graphs G and H,the star-critical Ramsey number r_(*)(G,H)is the minimum integer k such that any red/blue edge-coloring of K_(r-1)■K_(1,k)contains a red copy of G or a blue copy of H,where r is the classical Ramsey number R(G,H).Let C_(m)denote a cycle of order m and W_(n)a wheel of order n+1.Hook(2010)proved that r_(*)(W_(n),C_3)=n+3 for n≥6.In this paper,we show that r_(*)(W_(n),C_(m))=n+3 for m odd,m≥5 and n≥3(m-1)/2+2.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11871270,12161141003,11931006)。
文摘Let K_(1,k)be a star of order k+1 and K_(n)■K_(1,k)the graph obtained from a complete graph K_(n)and an additional vertex v by joining v to k vertices of K_(n).For graphs G and H,the star-critical Ramsey number r_(*)(G,H)is the minimum integer k such that any red/blue edge-coloring of K_(r-1)■K_(1,k)contains a red copy of G or a blue copy of H,where r is the classical Ramsey number R(G,H).Let C_(m)denote a cycle of order m and W_(n)a wheel of order n+1.Hook(2010)proved that r_(*)(W_(n),C_3)=n+3 for n≥6.In this paper,we show that r_(*)(W_(n),C_(m))=n+3 for m odd,m≥5 and n≥3(m-1)/2+2.