摘要
设G和H是任意的图,Ramsey数r(G,H)定义为最小的正整数r,使得图K_r的任意红蓝二边着色或存在单色的红色子图G,或存在单色的蓝色子图H.临界星图Ramsey数r_*(G,H)为最小的正整数n,使得图K_r-K_(1,r-1-n)的任意红蓝二边着色或存在单色的红色子图G,或存在单色的蓝色子图H.在临界星图启发下,临界完全图Ramsey数r_K(G,H)定义为最大的正整数n,使得图K_r-K_n的任意红蓝二边着色或存在单色的红色子图G或存在单色的蓝色子图H.这里r为Ramsey数r(G,H).确定了r_K(W_(1,n),K_3)和r_K(C_n,K_3),其中W_(1,n)=K_1+C_n为轮.
For graphs G and H, Ramsey number r(G,H) is the smallest integer r such that every 2-coloring of Kr contains either a red copy of G or a blue copy of H. Star critical Ramsey number r*(G,H) is the smallest integer n such that every 2-coloring of Kr-K1,r-1-n contains either a red copy of G or a blue copy of H. Under the inspiration of star critical Ramsey number, complete critical Ramsey number rK(G,H) is the largest integer n such that every 2-coloring of Kr-Kn contains either a red copy of G or a blue copy of H. In this paper, rK(Wn,Ka) and rK(Cn,K3) are determined. Wn=K1+Cn-1 is a wheel of size n.
作者
李燕
李雨生
LI Yan;LI Yusheng
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第2期298-300,共3页
Journal of Tongji University:Natural Science
基金
国家自然科学基金(11871377)